1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
10

Lithium was one of the metals studied by the American physicist Robert Millikan in his research on the photoelectric effect. Whe

n illuminated with blue light of frequency 6.64 × 10 14 Hz, the photoelectrons ejected from a lithium surface have a maximum kinetic energy of 0.332 eV. What is the threshold frequency for lithium? For this problem, let the value of Planck's constant, h, be 6.63 × 10 -34 J·s.
Physics
1 answer:
serg [7]3 years ago
3 0

Answer:

Explanation:the answer is 10

You might be interested in
A car is traveling at 7.0 m/s when the driver applies the brakes. The car moves 1.5 m before it comes to a complete stop. If the
viva [34]

Answer:

d. 6.0 m

Explanation:

Given;

initial velocity of the car, u = 7.0 m/s

distance traveled by the car, d = 1.5 m

Assuming the car to be decelerating at a constant rate when the brakes were applied;

v² = u² + 2(-a)s

v² = u² - 2as

where;

v is the final velocity of the car when it stops

0 = u² - 2as

2as = u²

a = u² / 2s

a = (7)² / (2 x 1.5)

a = 16.333 m/s

When the velocity is 14 m/s

v² = u² - 2as

0 = u² - 2as

2as = u²

s = u² / 2a

s = (14)² / (2 x 16.333)

s = 6.0 m

Therefore, If the car had been moving at 14 m/s, it would have traveled 6.0 m before stopping.

The correct option is d

4 0
2 years ago
John is carrying a shovelful of snow. The center of mass of the 3.00 kg of snow he is holding is 15.0 cm from the end of the sho
Andru [333]

Answer:

James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down

Explanation:

Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards

so here we can say

Upwards force = downwards Force + weight of snow

while if we find the other force which is acting downwards

then for that force we can say that net torque must be balanced

so here we have

F_{down} L_1 = W_{snow} L_2

so here we have

F_{down} = \frac{L_2}{L_1} (W_{snow})

so here we can say that upward force by which we push up is always more than the downwards force

8 0
3 years ago
Lab number 14: sudden stops hurt newtons first law
kompoz [17]

Answer:

you want to know newtons first law here.

Explanation:

An object that is at rest stays at rest or stays in motion.

7 0
3 years ago
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
3 years ago
You turn on the faucet for your garden hose and let go immediately the end search flying around and spraying water everywhere wh
max2010maxim [7]
It’s Newton’s third law
7 0
3 years ago
Other questions:
  • A converging lens brings rays of light together at a focal point. The bending of light rays is the result ofA. A combination of
    8·1 answer
  • What is amorphous material
    10·1 answer
  • Cuál es el tiempo empleado por una moto que alcanza una velocidad final de 100km/h partiendo del reposo y lo hace a una acelerac
    8·1 answer
  • A ship leaves port and travels 50 miles at a standard position of 45⁰. The ship
    7·1 answer
  • You are in a car going 70 km/h and another car passes you going in the opposite direction at 70 km/h. Do both cars have the same
    13·2 answers
  • What is mass number
    6·2 answers
  • A tourist stands at the top of the Grand Canyon, holding a rock, overlooking the valley below. Find the final velocity, and disp
    5·2 answers
  • You apply a force of 500 N to 150 N/m. how much does it stretch? Show the equation you are using, plus the values into the equat
    5·1 answer
  • Convert 75.0 degrees Celsius into Fahrenheit
    12·1 answer
  • A circuit carries a current of 0.64 A when there is a resistance of 50.0 Ω. The voltage applied to the circuit, to the nearest w
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!