Answer:
Explanation: In the previous section we listed four characteristics of radioactivity and nuclear decay that form the basis for the use of radioisotopes in the health and biological sciences. A fifth characteristic of nuclear reactions is that they release enormous amounts of energy. The first nuclear reactor to achieve controlled nuclear disintegration was built in the early 1940s by Enrico Fermi and his colleagues at the University of Chicago. Since that time, a great deal of effort and expense has gone into developing nuclear reactors as a source of energy. The nuclear reactions presently used or studied by the nuclear power industry fall into two categories: fission reactions and fusion reactions
Answer:
The answer is "
"
Explanation:
We arrange oxoacids to decrease the intensity of acids in this question. Or we may conclude all this from strongest to weakest acids they order oxoacids, that's why above given order is correct.
The balanced chemical reaction would be
<span>fecl2 + 2naoh = fe(oh)2(s) + 2nacl
Initial amounts of the reactants are given, so, we need to determine which of the reactants is the limiting reactant and use this amount to determine what is asked. However, what is being asked is how many of the FeCl2 is used in the reaction, showing that it is NaOH that is the limiting reactants. Thus, we just use the initial amount of NaOH and relate the substances by the chemical reaction as follows:
6 mol NaOH ( 1 mol FeCl2 / 2 mol NaOH ) = 3 mol FeCl2
Therefore, 3 moles of FeCl2 is used up and 3 moles of FeCl2 is also left after the reaction.</span>
Answer:

Explanation:
Hello,
In this case, the enthalpy of combustion is understood as the energy released when one mole of fuel, in this case octene, is burned in the presence of oxygen and is computed with the enthalpies of formation of the fuel, carbon dioxide and water as shown below (oxygen is circumvented as it is a pure element):

Thus, since we already know the enthalpy of combustion of the fuel, for carbon and water we have -393.5 and -241.8 kJ/mol respectively, thereby, the enthalpy of combustion turns out:

Best regards.
It describes the point at which the element is a solid liquid and has at a certain temperature and pressure