<span>To work out the volume of something from its density, use the compound measures triangle: mass over density and volume. To find volume that the beaker holds, divide the mass by the density. V = (388.15 - 39.09)/1. V = 349.06g/cm3. To find the weight of the beaker and the contents, first work out the weight (mass) of the mercury, with this formula: mass = d x v. M = 13.5 x 349.06. M = 4712.31. Then add on the weight of the beaker (39.09g). The total weight is 4751.40g.</span>
The masses of the components are obtained as;
- Sodium hydrogen carbonate = 3.51 g
- Sodium carbonate = 8.708 g
<h3>What is decomposition?</h3>
The term decomposition has to do with the breakdown of the given substance into its components. The components of sodium hydrogen carbonate could be identified as water vapor, carbon dioxide gas and sodium carbonate. Among these products that have been listed here, we can see that it is only the sodium carbonate that remains as a solid. The others are gases that move away from the system that is under study.
Now putting down the equation of the reaction, we have;

Now, the loss in mass must be due to the carbon dioxide and the water. Hence we obtain the loss in mass to be 10.000 g - 8.708 g = 1.292 g
Mass of sodium hydrogen carbonate = 2 * 88 g/mol * 1.292 g/62 g/mol
= 3.51 g
Learn more about anhydrous sodium carbonate :brainly.com/question/20479996
#SPJ1
Explanation:
I can give you some examples;
1) water
2) biomass
3)Soil
4) forest...
I hope this will help you
Sugar is a nonconductor. When it dissolves into water it dissolves as a covalent molecule. As a covalent molecule it does not conduct electricity in the way that ionic compounds like salt would.
Answer is: 4.02 grams of water are required.
Chemical reaction: BaH₂ + 2H₂O → Ba(OH)₂ + 2H₂.
Ideal gas law: p·V = n·R·T.
p = 755 mm Hg ÷ 760.0 mmHg / atm = 0.993 atm.
T = 25 + 273.15 = 298.15 K.
V(H₂) = 5.50 L.
R = 0,08206 L·atm/mol·K.
n(H₂) = 0.993 atm · 5.5 L ÷ 0,08206 L·atm/mol·K · 298.15 K.
n(H₂) = 0.223 mol.
From chemical reaction: n(H₂O) : n(H₂) = 1 : 1.
n(H₂O) = 0.223 mol.
m(H₂O) = 0.223 mol · 18 g/mol.
m(H₂O) = 4.02 g.