Answer:
hey you wanna get it right try this one: 48.0 kcal
was released... at constant pressure.
Explanation:
Answer:
Arts and science are similar in that they are expressions of what it is to be human in this world.
Explanation:
Both are driven by curiosity, discovery, the aspiration for knowledge of the world or oneself, and perhaps, as the conceptual artist Goshka Macuga said on her recent visit to Cern, a desire for world domination.
Answer:
<h2>The P wave will be the first wiggle that is bigger than the rest of the little ones (the microseisms). Because P waves are the fastest seismic waves, they will usually be the first ones that your seismograph records. The next set of seismic waves on your seismogram will be the S waves</h2>
Answer:
Statements Y and Z.
Explanation:
The Van der Waals equation is the next one:
(1)
The ideal gas law is the following:
(2)
<em>where n: is the moles of the gas, R: is the gas constant, T: is the temperature, P: is the measured pressure, V: is the volume of the container, and a and b: are measured constants for a specific gas. </em>
As we can see from equation (1), the Van der Waals equation introduces two terms that correct the P and the V of the ideal gas equation (2),<u> by the incorporation of the intermolecular interaction between the gases and the gases volume</u>. The term an²/V² corrects the P of the ideal gas equation since the measured pressure is decreased by the attraction forces between the gases. The term nb corrects the V of the ideal gas equation, <u>taking into account the volume occuppied by the gas in the total volume, which implies</u> a reduction of the total space available for the gas molecules.
So, the correct statements are the Y and Z: the non-zero volumes of the gas particles effectively decrease the amount of "empty space" between them and the molecular attractions between gas particles decrease the pressure exerted by the gas.
Have a nice day!
Answer:
Cohesion
Explanation:
Cohesion tension theory of water movement up the tree vessels
Cohesion is the term used to describe the binding forces present in water molecules through hydrogen bonds as such the water molecules have considerable tensile strenghth allowing them to be pulled up into the leaves of plants through the tree vessels without breakage as longitutudinal stress are placed on the water as it is pulled up