Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
The loudness of sound refer to how loud or soft a sound seems to a listener
<span>Metamorphic rock undergoes weathering, erosion; the particles are deposited and undergo lithification.</span>
Answer:
Too old(Ex. if real time is 1000 then they estimate >1000)
Explanation:
This is because with time our planet may have a definite function which describes temperature.(Because of all the factors and global warming except nuclear bomb testing)
Now nuclear test on planet have significant effect on temperature rise.
Also 14°C rise in temperature is good one because of this.
If future archaeologists only consider that uniform function as above mentioned then they estimate more time then the real one.
Thus too old is right answer.
A fish pushes water backwards in order to move forward is a good example of Newton's 3rd Law.