150
A
Explanation:
V
s
V
p
=
N
s
N
p
(
1
)
N
refers to the number of turns
V
is voltage
s
and
p
refer to the secondary and primary coil.
From the conservation of energy we get:
V
p
I
p
=
V
s
I
s
(
2
)
From
(
1
)
:
V
s
V
p
=
900
00
3
00
=
300
∴
V
s
=
300
V
p
Substituting for
V
s
into
(
2
)
⇒
V
p
I
p
=
300
V
p
×
0.5
∴
I
p
=
150
A
Seems a big current.
Answer:
The grinding machine is used for roughing and finishing flat, cylindrical, and conical surfaces; finishing internal cylinders or bores; forming and sharpening cutting tools; snagging or removing rough projections from castings and stampings; and cleaning, polishing, and buffing surfaces.
Answer:
7,217*10^28 atoms/m^3
Explanation:
- Metal: Vanadium
- Density: 6.1 g/cm^3
- Molecuar weight: 50,9 g/mol
The Avogadro's Number, 6,022*10^23, is the number of atoms in one mole of any substance. To calculate the number of atoms in one cubic meter of vanadium we write:
1m^3*(100^3 cm^3/1 m^3)*(6,1 g/1 cm^3)*(1 mol/50,9g)*(6,022*10^23 atoms/1 mol)=7,217*10^28 atoms
Therefore, for vanadium we have 7,217*10^28 atoms/m^3
Answer:
See attached picture.
Explanation:
See attached picture for explanation.
Answer: N has to be lesser than or equal to 1666.
Explanation:
Cost of parts N in FPGA = $15N
Cost of parts N in gate array = $3N + $20000
Cost of parts N in standard cell = $1N + $100000
So,
15N < 3N + 20000 lets say this is equation 1
(cost of FPGA lesser than that of gate array)
Also. 15N < 1N + 100000 lets say this is equation 2
(cost of FPGA lesser than that of standardcell)
Now
From equation 1
12N < 20000
N < 1666.67
From equation 2
14N < 100000
N < 7142.85
AT the same time, Both conditions must hold true
So N <= 1666 (Since N has to be an integer)
N has to be lesser than or equal to 1666.