Answer:
Explanation:
Given data in question
mean stress = 50 MPa
amplitude stress = 225 MPa
to find out
maximum stress, stress ratio, magnitude of the stress range.
solution
we will find first maximum stress and minimum stress
and stress will be sum of (maximum +minimum stress) / 2
so for stress 50 MPa and 225 MPa
=
+
/ 2
50 =
+
/ 2 ...........1
and
225 =
+
/ 2 ...........2
from eqution 1 and 2 we get maximum and minimum stress
= 275 MPa ............3
and
= -175 MPa ............4
In 2nd part we stress ratio is will compute by ratio of equation 3 and 4
we get ratio =
/
ratio = -175 / 227
ratio = -0.64
now in 3rd part magnitude will calculate by subtracting maximum stress - minimum stress i.e.
magnitude =
-
magnitude = 275 - (-175) = 450 MPa
Answer:
2074.2 KW
Explanation:
<u>Determine power developed at steady state </u>
First step : Determine mass flow rate ( m )
m / Mmax = ( AV )₁ P₁ / RT₁ -------------------- ( 1 )
<em> where : ( AV )₁ = 8.2 kg/s, P₁ = 0.35 * 10^6 N/m^2, R = 8.314 N.M / kmol , </em>
<em> T₁ = 720 K . </em>
insert values into equation 1
m = 0.1871 kmol/s ( mix )
Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )
W( power developed at steady state )
W = m [ Yco2 ( h1 - h2 )co2
Attached below is the remaining part of the detailed solution
I really don’t know good luck
Answer You ask your coach
The exit temperature is 586.18K and compressor input power is 14973.53kW
Data;
- Mass = 50kg/s
- T = 288.2K
- P1 = 1atm
- P2 = 12 atm
<h3>Exit Temperature </h3>
The exit temperature of the gas can be calculated isentropically as

Let's substitute the values into the formula

The exit temperature is 586.18K
<h3>The Compressor input power</h3>
The compressor input power is calculated as

The compressor input power is 14973.53kW
Learn more on exit temperature and compressor input power here;
brainly.com/question/16699941
brainly.com/question/10121263