Answer:
water is H2O having different structure than alcohol R-OH which means they have different properties too.
Explanation:
In water one oxygen atom is covalently bound with two hydrogen atoms while alcohol is an organic compound having Oh group attached to the carbon chain.
Other than liquid water can occur in solid form that is ice and in gaseous form that is vapors too while alcohol only present in liquid form.
heat of evaporation of alcohol is lower than water means water need more heat to evaporate than alcohol that is why we can say alcohol having more cooling effect than water.
Answer:
The fossil evidence of both an ocean and a forest can be found at different depths in the same location because there might have been a presence of both an ocean and a forest at the same location at different times in the history of Earth.
Explanation:
It is clear from various studies that the Earth has had a diverse geologic history in which events like drastic climate changes, upsurging of oceans, rapid desertification, etc., have taken place many times.
Thus, the possibility of an ocean and forest having shared a single location at different times in the history of Earth cannot be neglected.
Answer : The Lewis-dot structure of
is shown below.
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that rubidium has '1' valence electrons, iodine has '7' valence electrons and oxygen has '6' valence electrons.
Therefore, the total number of valence electrons in
= 1 + 7 + 2(6) = 20
As we know that
is an ionic compound because it is formed by the transfer of electron takes place from metal to non-metal element.
Answer:
<span>As the temperature of a liquid solvent increases, the amount of solute that can dissolve in it <u>increases</u>.
Explanation:
The solubility of most solutes in a solvent increases with increase in temperature. This solubility is closely related to the heat of solution, (the heat evolved or absorbed when solute is dissolved in solvent). Hence, majority of solutes when dissolved in solvent absorbs heat and makes the overall heat of solution positive. Hence, in this case more heat provided will increase the rate of solubility.</span>
Answer:
Explanation:
From the information given:
Step 1:
Determine the partial pressure of each gas at total Volume (V) = 4.0 L
So, using:





![Total pressure= P [N_2] + P[Ar] \ \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (0.525 + 1.7)Bar \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2.225 \ Bar](https://tex.z-dn.net/?f=Total%20pressure%3D%20P%20%5BN_2%5D%20%2B%20P%5BAr%5D%20%5C%20%5C%5C%20%5C%5C%20.%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%3D%20%280.525%20%2B%201.7%29Bar%20%5C%5C%20%5C%5C%20.%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%3D%202.225%20%5C%20Bar)
Now, to determine the final pressure using different temperature; to also achieve this, we need to determine the initial moles of each gas.
According to Ideal gas Law.

For moles N₂:



For moles of Ar:





Finally;
The final pressure of the mixture is:

P = 2.217 atm
P ≅ 2.24 bar