First, we need to determine the half reaction of magnesium. It would be expressed as:
Mg2+ + 2e- = Mg
Given the mass of magnesium metal that is produced, we calculate the total charge of the electrolysis by the relations we can get from the half reaction. We do as follows:
4.50 kg Mg ( 1000 g / 1 kg ) ( 1 mol / 24.305 g ) ( 2 mol e- / 1 mol Mg ) ( 96500 C / 1 mol e- ) = 35733388.2 C
We are given the applied EMF in units of V. This value is equal to J/C. So, 5 V is equal to 5 J/C.
35733388.2 C (5 J/C) = 178666941 J
178666941 J ( 1 kW-h / 3.6x10^6 J ) = 49.63 kW-h
Answer:
The relative densities of an object and the liquid it is placed in determine whether that object will sink or float. An object that has a higher density than the liquid it's in will sink. An object that has a lower density than the liquid it's in will float.
Explanation:
Hope it helps!
They try to base their conclusions off of data and measurements of which they should record from conducting experiments
Recall; pH + pOH = 14
In this case [OH-] =0.100 m
therefore;
pOH = -LOG[OH-]
= - Log (0.100)
= 1.00
Therefore; the pOH is 1.00
And since, pH +pOH = 14
Then pH = 14-pOH
= 14 -1
= 13
Thus the pH is 13.00