The answer is:
Transverse dune
The explanation:
Transverse dune : is abundant barchan dunes It may merge into barchanoid ridges, which then grade into linear .
The transverse dunes is called that because they lie transverse, or across, the wind direction, with the wind blowing perpendicular to the ridge crest.
It is large, very asymmetrical, elongated dune lying at right angles 90° to the prevailing wind direction.
Transverse dunes have a gently sloping windward side and a steeply sloping leeward side.
They general form in areas of sparse vegetation and abundant sand are transverse dunes.
Answer:
It's due to the distance from either ends of strings origin...
Explanation:
As we know that waves behave moving in a flow from one side to another side and this gives a prospective of motion. Suppose a wave is pinched from the near one end of a guitar then due to the distortion created by the point of tie of strings the wave super imposes and moves with a velocity v and produces a wave frequency f. as we the pinching go down to the center the wave stabilizes itself to a stationary origin right at the center and the frequency then changes accordingly as moving down on the string.
Answer:
Explanation:
It is a scientific law because it is based on observations
Answer:
Explanation:
Waves and wave functions are direct ways to graph vibrational motion. Specifically, for cases dealing with vibrating strings. If you were to move a tensioned string up and down with your arm, you would produce a wave with a given frequency, period, and amplitude.
The solution is:tan(θ) = opp / adj tan(θ) = y/x xtan(θ) = y
Find x:
x = y/tan(θ)
So x = 3/tan(π/6)
Perform implicit differentiation to get the equation:
dx/dt * tan(θ) + x * sec²(θ) * dθ/dt = dy/dt
Since altitude remains the same, dy/dt = 0. Now...
dx/dt * tan(π/6) + 3/tan(π/6) * sec²(π/4) * -π/4 = 0
changing the equation, will give us:
dx/dt = [3/tan(π/6) * sec²(π/6) * π/4} / tan(π/6) ≈ 12.83 km/min