This is your perfect answer
The base unit for time is the second (the other SI units are: metre for length, kilogram for mass, ampere for electric current, kelvin for temperature, candela for luminous intensity, and mole for the amount of substance). The second can be abbreviated as s or sec.
<h3>
Answer: D) 30</h3>
Angle of incidence always equals angle of reflection. Think of a tennis ball being hit into a wall. The ball will bounce off at the same angle that it approached with. The angles mentioned are formed through the line called the "normal", which is the line perpendicular to the surface.
Answer:
Options d and e
Explanation:
The pendulum which will be set in motion are those which their natural frequency is equal to the frequency of oscillation of the beam.
We can get the length of the pendulums likely to oscillate with the formula;

where g=9.8m/s
ω= 2rad/s to 4rad/sec
when ω= 2rad/sec

L = 2.45m
when ω= 4rad/sec

L = 9.8/16
L=0.6125m
L is between 0.6125m and 2.45m.
This means only pendulum lengths in this range will oscillate.Therefore pendulums with length 0.8m and 1.2m will be strongly set in motion.
Have a great day ahead
Time=50s
speed=25m/s
Distance = speed×time
=25×50
=1250m
DISTANCE TRAVELLED IS =1250m