Answer:
w=fx
w=(15)(5)
w=75
the angle between the deplacement and N is 0
Answer:
The skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Explanation:
To solve the problem it is necessary to go back to the theory of conservation of momentum, specifically in relation to the collision of bodies. In this case both have different addresses, consideration that will be understood later.
By definition it is known that the conservation of the moment is given by:

Our values are given by,

As the skater 1 run in x direction, there is not component in Y direction. Then,
Skate 1:


Skate 2:


Then, if we applying the formula in X direction:
m_1v_{x1}+m_2v_{x2}=(m_1+m_2)v_{fx}
75*5.45-75*1.41=(75+75)v_{fx}
Re-arrange and solving for v_{fx}
v_{fx}=\frac{4.04}{2}
v_{fx}=2.02m/s
Now applying the formula in Y direction:




Therefore the skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Answer:
Similarity: >>Time is independent variable and such is on the x-axis. ... >>Distance time graph tells you how much distance you have travelled, while velocity time graph tells you your acceleration. The difference between them is that the velocity-time graph reveals the speed of an object (and whether it is slowing down or speeding up), while the position-time graph describes the motion of an object over a period of time.
Explanation:
Answer:
An interaction of one object with another object results in a force between the two objects. Thus, at-least two objects must interact for a force to come into play.