Answer:
10.0 ml and 35.0ml respectively
Explanation:
if A=10.0ml let B be x
Now,
Lets assume the pan is balanced
then,
x = 10.0 ml
Therefore B= 10.0 ml
[Repeat the same process in next question]
The partial atmospheric pressure (atm) of hydrogen in the mixture is 0.59 atm.
<h3>How do we calculate the partial pressure of gas?</h3>
Partial pressure of particular gas will be calculated as:
p = nP, where
- P = total pressure = 748 mmHg
- n is the mole fraction which can be calculated as:
- n = moles of gas / total moles of gas
Moles will be calculated as:
- n = W/M, where
- W = given mass
- M = molar mass
Moles of Hydrogen gas = 2.02g / 2.014g/mol = 1 mole
Moles of Chlorine gas = 35.90g / 70.9g/mol = 0.5 mole
Mole fraction of hydrogen = 1 / (1+0.5) = 0.6
Partial pressure of hydrogen = (0.6)(748) = 448.8 mmHg = 0.59 atm
Hence, required partial atmospheric pressure of hydrogen is 0.59 atm.
To know more about partial pressure, visit the below link:
brainly.com/question/15302032
#SPJ1
Answer:the number of moles represented by 3.0 x 10^24 atoms of Ag is 0.500mol 0.500 m o l .
Explanation:
Answer:
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Explanation:
Hello!
In this case, since the molarity of a solution is defined in terms of the moles of the solute and the volume of solution, given that the concentration of Cu(NH₃)₄²⁺ is 0.041 M, and there is only one copper atom per Cu(NH₃)₄²⁺ ion, we can compute the concentration of Cu²⁺ as shown below:
![[Cu^{2+}]=0.041\frac{molCu(NH_3)_4^{2+}}{L}*\frac{1molCu^{2+}}{1molCu(NH_3)_4^{2+}} =0.041 \frac{molCu(NH_3)_4^{2+}}{L}](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B1molCu%5E%7B2%2B%7D%7D%7B1molCu%28NH_3%29_4%5E%7B2%2B%7D%7D%20%3D0.041%20%5Cfrac%7BmolCu%28NH_3%29_4%5E%7B2%2B%7D%7D%7BL%7D)
![[Cu^{2+}]=0.041 M](https://tex.z-dn.net/?f=%5BCu%5E%7B2%2B%7D%5D%3D0.041%20M)
Best regards!