To solve this problem it is necessary to apply the concepts related to temperature stagnation and adiabatic pressure in a system.
The stagnation temperature can be defined as

Where
T = Static temperature
V = Velocity of Fluid
Specific Heat
Re-arrange to find the static temperature we have that



Now the pressure of helium by using the Adiabatic pressure temperature is

Where,
= Stagnation pressure of the fluid
k = Specific heat ratio
Replacing we have that


Therefore the static temperature of air at given conditions is 72.88K and the static pressure is 0.399Mpa
<em>Note: I took the exactly temperature of 400 ° C the equivalent of 673.15K. The approach given in the 600K statement could be inaccurate.</em>
Answer:
Maximum shear stress is;
τ_max = 1427.12 psi
Explanation:
We are given;
Power = 2 HP = 2 × 746 Watts = 1492 W
Angular speed;ω = 450 rev/min = 450 × 2π/60 rad/s = 47.124 rad/s
Diameter;d = 1 in
We know that; power = shear stress × angular speed
So,
P = τω
τ = P/ω
τ = 1492/47.124
τ = 31.66 N.m
Converting this to lb.in, we have;
τ = 280.2146 lb.in
Maximum shear stress is given by the formula;
τ_max = (τ•d/2)/J
J is polar moment of inertia given by the formula; J = πd⁴/32
So,
τ_max = (τ•d/2)/(πd⁴/32)
This reduces to;
τ_max = (16τ)/(πd³)
Plugging in values;
τ_max = (16 × 280.2146)/((π×1³)
τ_max = 1427.12 psi
Answer:
The sum of all currents entering a junction is 0
Explanation:
Current cannot disappear, so the currents leaving a junction have to equal the currents entering a junction. If you would give the currents leaving the junction an opposite sign (e.g., negative) it implies that the sum of all these currents is exactly 0.
Answer:
screw is the answer of the question
It’s D. This is because having oil changes often, makes the care for your car better. I hope this helps.