Answer:
θ₁ = 35.32°
Explanation:
given,
refractive index of medium 1 = n₁ = 1.75
refractive index of medium 2 = n₂ = 1.24
condition to describe the refracted angle

...(1)
Using Snell's Law
n₁ sin θ₁ = n₂ sin θ₂
θ₁ , θ₂ is the angle of incidence and refractive index
n₁. n₂ is the refractive index medium 1 and medium 2
1.75 x sin θ₁ = 1.24 x sin θ₂
From equation (1)
1.75 x sin θ₁ = 1.24 x sin (90-θ₁)
1.75 sin θ₁ = 1.24 cos θ₁
tan θ₁ = 0.708
θ₁ = 35.32°
Hence, angle of incidence is equal to θ₁ = 35.32°
Answer:
9 m
Explanation:
i did the test and got 100%
The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 *
m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 ×
C
mass of electron = 9.1 ×
kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 ×
* 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * 
= 1/2 * 9.1 ×
* 
equation both the equations
1/2 * 9.1 ×
*
= 1.6 ×
= 0.352 *
m/s
= 35.2 * 
= 5.93 *
m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4
I haven't worked on Part-A, and I don't happen to know the magnitude of the gravitational force that the Sun exerts on the Earth.
But whatever it is, it's exactly, precisely, identical, the same, and equal to the magnitude of the gravitational force that the Earth exerts on the Sun.
I think that's the THIRD choice here, but I'm not sure of that either.