To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz
Answer:
See Below
Explanation:
Okay, I thinkkk what it is asking by what you summarzied for me issss:
They split the total time into four quarters. They then took (for the first quarter) the start time. Then when the first quarter ends and the second quarter starts is the "end" time.
They then subtract the start time of the second quarter from the end time of the first quarter.
I hope this helps, good luck! :D
Answer:
Explanation:
Given
mass of boy 
mass of girl 
speed of girl after push 
Suppose speed of boy after push is 
initially momentum of system is zero so final momentum is also zero because momentum is conserved




i.e. velocity of boy is 2.82 m/s towards west
Answer:
repel each other
Explanation:
The magnitude of the charge of an electron is called... ... If a positively-charged glass rod is suspended so that it turns easily and another positively-charged glass rod is brought close to it, the two rods will... Repel each other.
Answer:
research topic and research question (hypothesis)
Explanation: