Answer:
-6 m/s^2
Explanation:
30 - 90 = -60
-60 / 10 = -6
If acceleration was constant, it will be -6 m/s^2
Answer:
1.56 J
Explanation:
The potential energy only depends on the vertical height from the ground level.
We consider the ground level to have zero P.E.
So when it is 2 m above the ground level,
P.E. = mgh
= 0.078×10×2
= 1.56 J
Answer:
F = 8.6 10⁻¹² N
Explanation:
For this exercise we use the law of conservation of energy
Initial. Field energy with the electron at rest
Em₀ = U = q ΔV
Final. Electron with velocity, just out of the electric field
Emf = K = ½ m v²
Em₀ = Emf
e ΔV = ½ m v²
v =√ 2 e ΔV / m
v = √(2 1.6 10⁻¹⁹ 51400 / 9.1 10⁻³¹)
v = √(1.8075 10¹⁶)
v = 1,344 10⁸ m / s
Now we can use the equation of the magnetic force
F = q v x B
Since the speed and the magnetic field are perpendicular the force that
F = e v B
F = 1.6 10⁻¹⁹ 1.344 10⁸ 0.4
For this exercise we use the law of conservation of energy
Initial. Field energy with the electron at rest
Emo = U = q DV
Final. Electron with velocity, just out of the electric field
Emf = K = ½ m v2
Emo = Emf
.e DV = ½ m v2
.v = RA 2 e DV / m
.v = RA (2 1.6 10-19 51400 / 9.1 10-31)
.v = RA (1.8075 10 16)
.v = 1,344 108 m / s
Now we can use the equation of the magnetic force
F = q v x B
Since the speed and the magnetic field are perpendicular the force that
F = e v B
F = 1.6 10-19 1,344 108 0.4
F = 8.6 10-12 N
Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop, IR = E- V
IR = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:
IR = V

Therefore, the resistance that will provide this potential drop is 388.89 ohms.
Answer: feet first
Explanation:
It is always the safest to enter with your feet first. You can become paralyzed or injure you neck if you dive into a body of water that is too shallow. Therefore its always best to dive feet first instead.