Answer:
The gravitational potential energy it had from being above the ground is converted to kinetic energy as the rock falls. As kinetic energy increases, the velocity of the rock will also increase.
Explanation:
The answer is density
because density is equal to the mass/volume
The formula we can use in
this case would be:
v = sqrt (T / (m / l))
Where,
v = is the velocity of the
transverse wave = unknown (?)
T = is the tension on the
rope = 500 N
m = is the mass of the
rope = 60.0 g = 0.06 kg
l = is the
length of the rope = 2.00 m
Substituting the given values into the equation to search
for the speed v:
v = sqrt (500 N/(0.06 kg /2 m))
v = sqrt (500 * 2 / 0.06)
v = sqrt (16,666.67)
<span>v = 129.10 m/s</span>
I think it may be c, 1.7 v. I work with electricity a lot.
Answer:
a

b
Explanation:
From the question we are told that
The distance of separation is 
The is distance of the screen from the slit is 
The distance between the central bright fringe and either of the adjacent bright 
Generally the condition for constructive interference is

From the question we are told that small-angle approximation is valid here.
So 
=> 
=> 
Here n is the order of maxima and the value is n = 1 because we are considering the central bright fringe and either of the adjacent bright fringes
Generally the distance between the central bright fringe and either of the adjacent bright is mathematically represented as

From the question we are told that small-angle approximation is valid here.
So

=> 
So


substituting values



In the b part of the question we are considering the next set of bright fringe so n= 2
Hence
