<span>It's called an electric current</span>
Answer:
a. I = 0.76 A
b. Z = 150.74
c. RL₁ = 34.41 , RL₂ = 602.58
d. RL₂ = 602.58
Explanation:
V₁ = 116 V , R₁ = 77.0 Ω , Vc = 364 V , Rc = 473 Ω
a.
Using law of Ohm
V = I * R
I = Vc / Rc = 364 V / 473 Ω
I = 0.76 A
b.
The impedance of the circuit in this case the resistance, capacitance and inductor
V = I * Z
Z = V / I
Z = 116 v / 0.76 A
Z = 150.74
c.
The reactance of the inductor can be find using
Z² = R² + (RL² - Rc²)
Solve to RL'
RL = Rc (+ / -) √ ( Z² - R²)
RL = 473 (+ / -) √ 150.74² 77.0²
RL = 473 (+ / -) (129.58)
RL₁ = 34.41 , RL₂ = 602.58
d.
The higher value have the less angular frequency
RL₂ = 602.58
ω = 1 / √L*C
ω = 1 / √ 602.58 * 473
f = 285.02 Hz
Over time, the types of technology can vary and be improved upon so that more advanced techniques become more valued. This could be the situation with mining whereby back in the 1500's in underground mines the rock was broken by fire setting ie lighting a fire below the rock face to heat up the rock and then throwing cold water on it to crack it, so that it could be dug by hand. With the advent of explosives, this all changed so that the rock could be blasted. The increase in advance rates for an underground heading have thus gone from 5-20 feet per month to up to 300meters (984 ft) per month for a 24/7 mining operation, which is a huge improvement.
You need to find the mass of water in the pool.
Find the volume (10 x 4 x 3) = 120 m3
Water has a density of 1000g/m3,so 120 m3 = 120 x 1000 = 120 000 kg
[delta]H = 4.187 x 120 000 x 3.4 (and the units will be kJ)
You then use the heat of combustion knowing that each mole of methane
releases 891 kJ of heat so if you divide 891 into the previous answer,
you will get the number of moles of CH4