Hey! I empathize with you, as I just started the energy unit in physics as well!
Alright, lets list what we know, and which equation(s) we need.
PE = Gravitational Potential Energy

m = mass
g = gravity (9.8 m/s^2)
h = height
Guess what?
We need to find the height!
Lets make this more organized:
Known:
m = 40 kg
PE = 14000
g = 9.8 m/s^2
Unknown:
h = ?
================================
Now, if we take a look at the equation PEg = mgh, you will see that we have everything besides the height! So lets solve for the height by substituting in for the variables we know:
14000 J = 40 kg * (9.8 m/s^2) * h
40 * 9.8 = 392
14000 J = 392 * h
14000/392 = h
35.71 m = h
There we go! If you simply list what you know and don't know, you will find the equation you need to solve the problem.
Have a great day and good luck!
P1v1/t1 = p2v2/t2
p1=p2, v1=.2, t1=333, t2=533
we can find v2 from this
be aware, temperature must be in Kelvin.
Answer:
Open
Explanation:
A switch is a part of a circuit where a connection can be made or broken. By convention, when the switch is "open", the connection is broken and current cannot pass. When the switch is "closed", the connection is complete and current can pass.
Answer: NNOOOOOOOOOOOOOOOOOOONONONO
Explanation: simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side. The time interval of each complete vibration is the same. The force responsible for the motion is always directed toward the equilibrium position and is directly proportional to the distance from it. That is, F = −kx, where F is the force, x is the displacement, and k is a constant. This relation is called Hooke’s law.
A specific example of a simple harmonic oscillator is the vibration of a mass attached to a vertical spring, the other end of which is fixed in a ceiling. At the maximum displacement −x, the spring is under its greatest tension, which forces the mass upward. At the maximum displacement +x, the spring reaches its greatest compression, which forces the mass back downward again. At either position of maximum displacement, the force is greatest and is directed toward the equilibrium position, the velocity (v) of the mass is zero, its acceleration is at a maximum, and the mass changes direction. At the equilibrium position, the velocity is at its maximum and the acceleration (a) has fallen to zero. Simple harmonic motion is characterized by this changing acceleration that always is directed toward the equilibrium position and is proportional to the displacement from the equilibrium position. Furthermore, the interval of time for each complete vibration is constant and does not depend on the size of the maximum displacement. In some form, therefore, simple harmonic motion is at the heart of timekeeping.
Answer:
In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity (which includes to begin moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull.