Answer:
the length of stretched spring in cm is 22
Explanation:
given information:
spring length, x1 = 20 cm = 0.2 m
force, F = 100 N
the length of spring streches, x2 = 22 cm = 0.22 m
According to Hooke's law
F = - kΔx
k = F/*=(x2-x1)
= 100/(0.22 - 0.20)
= 5000 N/m
if the spring is now suspended from a hook and a 10.2-kg block is attached to the bottom end
m = 10.2 kg
W = m g
= 10.2 x 9.8
= 99.96 N
F = - k Δx
Δx = F / k
= 99.96 / 5000
= 0.02
Δx = x2- x1
x2 = Δx + x1
= 0.20 + 0.02
= 0.22 m
= 22 cm
Answer:
An atmosphere is the layers of gases surrounding a planet or other celestial body. Earth's atmosphere is composed of about 78% nitrogen, 21% oxygen, and one percent other gases
Answer:
Technique of comparing abundance ratio between radioactive isotopes to a reference isotope to determine the age of a material called radioactive dating. It determines the age by having a more abundance of isotopes in the cellular being.
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.
To develop this problem it will be necessary to apply the concepts related to the frequency of a spring mass system, for which it is necessary that its mathematical function is described as

Here,
k = Spring constant
m = Mass
Our values are given as,


Rearranging to find the spring constant we have that,




Therefore the spring constant is 1.38N/m