Answer:
B) Yes, but only those electrons with energy greater than the potential difference established between the grid and the collector will reach the collector.
Explanation:
In the case when the collector would held at a negative voltage i.e. small with regard to grid So yes the accelerated electrons would be reach to the collecting plate as the kinetic energy would be more than the potential energy that because of negative potential
so according to the given situation, the option b is correct
And, the rest of the options are wrong
The centripetal acceleration a is 4.32
10^-4 m/s^2.
<u>Explanation:</u>
The speed is constant and computing the speed from the distance and time for one full lap.
Given, distance = 400 mm = 0.4 m, Time = 100 s.
Computing the v = 0.4 m / 100 s
v = 4
10^-3 m/s.
radius of the circular end r = 37 mm = 0.037 m.
centripetal acceleration a = v^2 / r
= (4
10^-3)^2 / 0.037
a = 4.32
10^-4 m/s^2.
C and d have the same amount of protons and electrons
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.
The apparent magnitude scale is a classification scheme which is based on the brightness of stars. The range of brightness values is from 1 to 6.
The stars which are the most brightest are ranked as number 1 and also called first magnitude stars, stars which are little dimmer than number 1 are ranked as number 2 and also called second magnitude stars. Similarly the most faintest stars are ranked number 6 and also called as the sixth magnitude stars.