54.15 g
First you start out with the equation n=cv (n= moles, c=molarity, v= volume)
You’re going to multiply 0.10M by 3.30L to get an answer of 0.33 moles of Ca(NO3)2
From there you’re gonna convert the moles to grams to get your answer, first you have to find the molar mass of Ca(NO3)2
This can be done by finding adding the molar mass of each individual substance
The answer you should get for the molar mass is 164.1 g
From there just multiply the number of moles you calculated (0.33 mol) by the molar mass (164.1 g) and your answer is going to be 54.15 g Ca(NO3)2
Answer:
27.4°C
Explanation:
Using the equation:
Q = m*C*T
<em>Where Q is heat added,</em>
<em>m the mass of water</em>
<em>C specific heat of water (4.18J/g°C)</em>
<em>And T the increase in temperature</em>
We can solve for the increase in temperature and thus, the final temperature of water:
Q = 88200J; m = 6500g:
88200J = 6500g*4.18J/g°C*T
3.2°C = T = increase in temperature
Final temperature is:
24.2°C + 3.2°C =
<h3>27.4°C</h3>
Answer:
B.
the passage of genetic instructions from one generation to the next generation.
These are called genes. One mate reporduces with another made and the genetic buildup merges 50 % and 50% with genetics(if it's meiosis), or DNA codes from the parents to the offspring that then possess some of the genes. That shows heridity.
2.38×10^-3
Explanation:
from the question,the we calculate the latent heat of vaporization with the difference in temperature being put into consideration
Answer:
Total pressure of the mixture is 12.2 atm
Explanation:
Let's apply the Ideal Gases law to solve this
Total pressure . V = Total moles . R . T
Total moles = 0.4 m of He and 0.6 mole of Ne → 1 mol
P . 2L = 1 mol . 0.082 L.atm/mol. K . 298K
P = ( 1 mol . 0.082 L.atm/mol. K . 298K) /2L
P = 12.2 atm