Answer:
First Quarter and Third Quarter.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the Moon across to the Earth sphere.
Since gravity variates with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, seeing the image below, point A is closer to the Moon than point b, and at the same time the center of mass of the Earth will feel more attracted to the Moon than point B. Therefore, that creates a tidal bulge in point A and point B.
When the Sun and the Moon are alight with respect to the Earth, then the Sun tidal force contributes to the tidal force of the Moon over the Earth. That makes the high tides even higher (spring tides).
However, when the Sun is not in the same line than the Moon (the Moon is at 90° with respect to the Sun), then the low tides are higher and the high tides are lower. That scenario is known as neap tides.
Therefore, that happens when the Moon is at First Quarter and Third Quarter.
Answer:
Explanation:
Density = Mass / Volume = 850 / 40*10*5 = 0.425 g /cm^3


Compounds contain two or more different elements.
Water is a molecule because it contains molecular bonds . Water is also a compound because it is made from more than one kind of element. (oxygen and hydrogen).
So If you like, you can say that water is a molecular compound.
HOPE IT HELPED YOU.
Answer:
the magnitude of acceleration will be 1.50m/s^2
Explanation:
To calculate your acceleration, you can use your formula that states that the net force on an object is equal to the mass of the object multiplied by the acceleration of the object. Fnet=ma
if you draw out this situation and label the forces you will have your vector towards the right with a magnitude of 20.0N and then your friction vector will be pointing to the left (in other words, in the negative direction) (opposing the direction of movement) with a magnitude of 5.00N, with the 10.0 kg box in the middle.
The net force will be calculated using F1+F2=Fnet where your F1=20.0N and F2= -5.00N (since it is towards the negative direction).
you will find that Fnet=15.0N
With that, plug in the values you know to calculate the acceleration of the block:
Fnet=ma
(15.0N)=(10.0kg)a from her you can divide both sides by 10 to isolate a:
1.50=a (and now make sure to label the units of your answer)
a=1.50m/s^2 (which is the typical unit for acceleration)
Answer:
588 N
Explanation:
Since the 60 kg is moving at a constant velocity there is no acceleration. In order for the system to be balanced, both the normal force and the force of gravity must be equal. In this case the man has a mass of 60 kg. So to find the force you multiply mass by gravitys constant (9.81). And you end up with an answer of 588.6 but I rounded to 588.