Answer:
55.66 m
Explanation:
While falling by 50 m , initial velocity u = 0
final velocity = v , height h = 50 , acceleration g = 9.8
v² = u² + 2gh
= 0 + 2 x 9.8 x 50
v = 31.3 m /s
After that deceleration comes into effect
In this case final velocity v = 17 m/s
initial velocity u = 31.3 m/s
acceleration a = - 61 m/s²
distance traveled h = ?
v² = u² + 2gh
(17)² = (31.3)² - 2x 61xh
h = 690.69 / 2 x 61
= 5.66 m
Total height during which he was in air
= 50 + 5.66
= 55.66 m
Answer:
The ball will fall back and land to Elle's hands.
Explanation:
The bus move in a straight line with constant velocity means that there is no change of direction and no acceleration. Inertia can change the direction of the ball and acceleration can change its velocity. Since these two factors is not present in this scenario, the ball only has vertical movement. Thus the ball will land where it was thrown, in Elle's hands.
The US English System of measurement grew out of the manner in which people secured measurements using body parts and familiar objects. For example, shorter ground distances were measured with the human foot and longer distances were measured by paces, with one mile being 1,000 paces. Capacities were measured with household items such as cups, pails (formerly called gallons) and baskets.
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2