Using the formula: E = kQ / d² where E is the electric field, Q is the test charge in coulomb, and d is the distance.
E = kQ / d²
k = 9 x 10^9 N-m²/C²
Q = 6.4 x 10^-5 C
d = 2.5 x 10^-2 m
Substituting the given values to the equation, we have:
E = (9 x 10^9)(6.4 x 10^-5) / (2.5 x 10^-2) ²
Electric field at the test charge is 921600000 N/C
Answer:
776.6 w
1.04 hp
Explanation:
given:
Mass, m = 190kg
height change, h = 25m
time elapsed, t = 60 s
acceleration due to gravity, g = 9.81 m/s²
Potential energy required raising 190 kg of water to a height of 25m
= mgh
= 190 x 9.81 x 25
= 46,597.5 J
Power required in 60 s
= Energy required ÷ time elapsed
= 46,597.5 ÷ 60
= 776.6 Watts (Use conversion 1 W = 0.00134102 hp)
= 776.6 w x 0.00134102 hp/w
= 1.04 hp
Answer:
Bottom left corner for whatever group that is
Lithium, sodium, and potassium all react with water
Answer:
E. downward and constant
Explanation:
Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.
For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.