Answer:
v₂ = 16 m/s
Explanation:
We can use the continuity equation, which is as follows:

where,
A₁ = Area of inlet = πd²/4
A₂ = Area of outlet = π(d/2)²/4 = πd²/16
v₁ = velocity at inlet = 4 m/s
v₂ = velocity at outlet = ?
Therefore,

<u>v₂ = 16 m/s</u>
Answer:
a) F = 1.26 10⁵ N, b) F = 2.255 10³ N, c) F_ {soil} = 3078 N
Explanation:
For this exercise we will use the relationship between momentum and moment
I = Δp
F t = p_f -p₀
a) with stiff legs, final speed is zero, initial velocity is down
Ft = 0-p₀
F = m v / t
let's calculate
F = 84.0 6.82 / 4.56 10⁻³
F = 1.26 10⁵ N
b) bending the legs
let's calculate
F = 84.0 6.82 / 0.254
F = 2.255 10³ N
c) It is requested to calculate the force of the ground on the man
∑ F = F_soil -W
F_soil = F + W
F_ {soil} = 2.255 103 + 84 9.8
F_ {soil} = 3078 N
Answer:
18 m
Explanation:
E = mgh
45 J = (0.25 kg) (9.8 m/s²) h
h = 18 m
Answer:
D. 3.0 m/s
Explanation:
because I did this in my class
The three things that are necessary are power, a force, and movement in the opposite direction of the applied force.