In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is

where D=5.00 m is the distance of the screen from the slits, and

is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:

And from the relationship between frequency and wavelength,

, we can find the frequency of the light:
Answer:
(a) The resistance of 25m of wire is 3 ohms
(b) the length of this wire that has resistance 22 ohms is 183.33 m
Explanation:
Given;
resistivity of the wire, ρ = 0.12 ohms per meter
(a) The resistance of 25m of wire is calculated as follows;

(b) the length of this wire that has resistance 22 ohms is calculated as;

Answer:
Motivation
Explanation:
Motivation is the force that directs one's behavior. This force is required for repeated actions. There are two types of motivation:
Intrinsic
This type of motivation is comes from the individual
Extrinsic
This type of motivation is comes from an external influence.
Both conscious and unconscious factors influence motivation.
This question is incomplete, the complete question is;
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength 1.5 m from the center of the circle is 7 mV/m.
At what rate is the magnetic field changing?
Answer:
the magnetic field changing at the rate of 9.33 m T/s
Explanation:
Given the data in the question;
Electric field E = 7 mV/m
radius r = 1.5 m
Now, from Faraday law of induction;
∫E.dl = d∅/dt
E∫dl = A( dB/dt )
E( 2πr ) = πr² ( dB/dt )
( 0.007 ) = (r/2) ( dB/dt )
( 0.007 ) = 0.75 ( dB/dt )
dB/dt = 0.007 / 0.75
dB/dt = 0.00933 T/s
dB/dt = ( 0.00933 × 1000) m T/s
dB/dt = 9.33 m T/s
Therefore, the magnetic field changing at the rate of 9.33 m T/s
Answer:
X-Positions: Y-Positions
x(0) = 0 y(0) = 0
x(2) = 120 m y(2) = 19.6 m
x(4) = 240 m y(4) = 78.4 m
x(6) = 360 m y(6) = 176.4 m
x(8) = 480 m y(8) = 313 m
x(10) = 600m y (10) = 490 m
Explanation:
X-Positions
- First, we choose to take the horizontal direction as our x-axis, and the positive x-axis as positive.
- After being thrown, in the horizontal direction, no external influence acts on the stone, so it will continue in the same direction at the same initial speed of 60. 0 m/s
- So, in order to know the horizontal position at any time t, we can apply the definition of average velocity, rearranging terms, as follows:

- It can be seen that after 2 s, the displacement will be 120 m, and each 2 seconds, as the speed is constant, the displacement will increase in the same 120 m each time.
Y-Positions
- We choose to take the vertical direction as our y-axis, taking the downward direction as our positive axis.
- As both axes are perpendicular each other, both movements are independent each other also, so, in the vertical direction, the stone starts from rest.
- At any moment, it is subject to the acceleration of gravity, g.
- As the acceleration is constant, we can find the vertical displacement (taking the height of the cliff as the initial reference level), using the following kinematic equation:

- Replacing by the values of t, we get the following vertical positions, from the height of the cliff as y = 0:
- y(2) = 2* 9.8 m/s2 = 19.6 m
- y(4) = 8* 9.8 m/s2 = 78.4 m
- y(6) = 18*9.8 m/s2 = 176.4 m
- y(8) = 32*9.8 m/s2 = 313.6 m
- y(10)= 50 * 9.8 m/s2 = 490.0 m