Explanation:
Given that,
Mass = 0.254 kg
Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]
Force = 0.5 N
y = 0.628
We need to calculate the A and d
Using formula of A and d
.....(I)
....(II)
Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Hence, This is the required solution.
Answer:
electricity
If a rod is charged it is because of the electrical force acting on it
Answer:
1) It expresses the rate (top speed) at which it can move with time.
2) P = 20 W
3) h = 18 km
Explanation:
1) Power is the rate of transfer of energy.
⇒ Power = 
i.e P = 
Thus a car's engine power is 44000W implies that the engine of the car can propel the car at this rate. This expresses the rate (top speed) at which it can move with time.
2) m = 400g = 0.4 kg
t = 20 s
h = 100m
g = 10 m/
P = 
= 
= 
P = 20 W
3) u = 600 m/s
g = 10 m/
From the third equation of free fall,
=
- 2gh
V is the final velocity, U is the initial velocity, h is the height.
0 =
- 2 x 10 x h
0 = 360000 - 20h
20h = 360000
h = 
= 18000
h = 18 km
The maximum height of the bullet would be 18 km.
Explanation:
Volume of 10 coins = 100ml - 75ml = 25ml
Volume of 1 coin = 25ml / 10 = 2.5ml
The average volume of each coin is 2.5ml.
Answer:
Straight line graph attached showing mechanical energy on x-axis and altitude y on y-axis
Explanation:
As mechanical energy is the sum of kinetic energy and potential energy, the ball at a height H possesses potential energy= m.g.H
and Kinetic energy= 0.
But the sum of both energies is equal to m.g.H.
When the ball starts moving, the height starts to decrease and potential energy also decreases with decreasing y. On the other hand kinetic energy starts increasing with decreasing Y. But their sum remains constant i.e equal to mechanical energy. It remains same until the ball touches the ground. The graph attached shows height H or altitude y on x-axis and Mechanical Energy on y-axis. It shows a straight horizental line showing that mechanical energy remains same as y decreases.