A spinning force acting upon it
Answer:
<em>155.80rad/s</em>
Explanation:
Using the equation of motion to find the angular acceleration:

is the final angular velocity in rad/s
is the initial angular velocity in rad/s
is the angular acceleration
t is the time taken
Given the following

Time = 4.1secs
Convert the angular velocity to rad/s
1rpm = 0.10472rad/s
6100rpm = x
x = 6100 * 0.10472
x = 638.792rad/s
Get the angular acceleration:
Recall that:

638.792 = 0 + ∝(4.1)
4.1∝ = 638.792
∝ = 638.792/4.1
∝ = 155.80rad/s
<em>Hence the angular acceleration as the blades slow down is 155.80rad/s</em>
<h3>Answer</h3>
(A) Resistance is directly related to length.
<h3>Explanation</h3>
Formula for resistance
R = p(length) / A
where R = resistance
p = resistivity(material of wire)
A = cross sectional area
So it can be seen that resistance depends upon 3 factors that are length of wire , resistivity of wire and the cross sectional area of the wire.
If two of the factors, resistivity and cross sectional area, are kept constant then the resistance is directly proportional to the length of wire.
<h3> R ∝ length</h3>
This means that the resistance of the wire increases with the increase in length of the wire and decreases with the decrease of length of the wire.