Answer:
2940.1 joules would you burn in climbing stairs all day.
Explanation:
Work = W = F
d
going up stairs would be against force of gravity
W = mgh
where h is the height
the question is not complete because we need speed or distance
h = v
t
so assuming 1 step per second
h = 86,400 steps
7inchs/step
0.0254 m/inch
h = 15362 m
so from this
W = 800 N
15362
= 12289600 J
that means YOU need 12289600 J to walk 1 step per second all day
divide that by 4180 J /Kcal
Kcal = 
= 
= 2940.1 Kcal
if you ran faster you would use more energy 2 steps per second would mean 5880 Kcal.
Answer:
9.4 m/s
Explanation:
According to the work-energy theorem, the work done by external forces on a system is equal to the change in kinetic energy of the system.
Therefore we can write:

where in this case:
W = -36,733 J is the work done by the parachute (negative because it is opposite to the motion)
is the initial kinetic energy of the car
is the final kinetic energy
Solving,

The final kinetic energy of the car can be written as

where
m = 661 kg is its mass
v is its final speed
Solving for v,

Answer:

Given:
Mass (m) = 3.0 kg
Uniform speed (v) = 20 m/s
Length of string (r) = 40 cm = 0.4 m
To Find:
Tension in the string (T)
Explanation:
Tension (T) is the string will be equal to centripetal force (
).

Substituting value of m, v & r in the equation:


Tension in the string (T) = 3 kN
Answer: Symbol is I and unit A
Explanation: A represents Amperes
HOPE THIS HELPS!!!!!!!!
Answer:
15 m/s
Explanation:
Using the law of conservation of energy, potential energy equals kinetic energy hence

Therefore

where g is the acceleration due to gravity, m is the mass of the object, h is the height and v is the speed of the wallet
Taking g as 9.81 then
