1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
12

Ow do quantum numbers relate to electrons?

Physics
1 answer:
strojnjashka [21]3 years ago
3 0
They enable us to dig deeper into the electron configurations by making us focus on electrons' quantum nature
You might be interested in
The following are examples of physical properties except
Ugo [173]
<h2>Answer:</h2><h3>D. ability to react with oxygen</h3><h2>Explanation:</h2>

<em>Im</em><em> </em><em>not</em><em> </em><em>sure</em><em> </em><em>this</em><em> </em><em>in</em><em> </em><em>your</em><em> </em><em> </em><em>choices</em><em> </em><em>but</em><em> </em><em>if</em><em> </em><em>it</em><em> </em><em>is</em><em>,</em><em> </em><em>this</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>answer</em><em>. </em>

<em>I</em><em> </em><em>hope</em><em> </em><em>I've</em><em> </em><em>helped</em><em>. </em>

6 0
3 years ago
Read 2 more answers
Newton's first law of motion gives the concept of force moment ​
Furkat [3]

Answer:

Hey there

Where trying to say that:

Newton's first law gives the concept of force and momentum?

That's false if that's is what you said.

Newton's first law tells us that objects in motion will remain in motion and objects at rest will remain at rest.

Newton's second law gives us the concept of force and momentum.

6 0
2 years ago
Consider the interference pattern produced by two parallel slits of width a and separation d, in which d = 3a. The slits are ill
laila [671]

Answer:

a)   m =1  θ = sin⁻¹  λ  / d,  m = 2        θ = sin⁻¹ ( λ  / 2d) ,   c)     m = 3

Explanation:

a) In the interference phenomenon the maxima are given by the expression

         d sin θ = m λ

the maximum for m = 1 is at the angle

          θ = sin⁻¹  λ  / d

the second maximum m = 2

          θ = sin⁻¹ ( λ  / 2d)

the third maximum m = 3

        θ = sin⁻¹ ( λ  / 3d)

the fourth maximum m = 4

       θ = sin⁻¹ ( λ  / 4d)

b) If we take into account the effect of diffraction, the intensity of the maximums is modulated by the envelope of the diffraction of each slit.

       I = I₀ cos² (Ф) (sin x / x)²

       Ф = π d sin θ /λ

       x = pi a sin θ /λ

where a is the width of the slits

with the values ​​of part a are introduced in the expression and we can calculate intensity of each maximum

c) The interference phenomenon gives us maximums of equal intensity and is modulated by the diffraction phenomenon that presents a minimum, when the interference reaches this minimum and is no longer present

maximum interference       d sin θ = m λ

first diffraction minimum    a sin θ = λ

we divide the two expressions

                       d / a = m

In our case

                   3a / a = m

                    m = 3

order three is no longer visible

7 0
2 years ago
A ray of yellow light (f = 5.09 × 1014hz) travels at a speed of 2.04 × 108meters per second in
denis23 [38]
Velocity = fλ

where f is frequency in Hz, and λ is wavelength in meters.

2.04 * 10⁸ m/s =  5.09 * 10¹⁴  Hz   *  λ

(2.04 * 10⁸ m/s) / (5.09 * 10¹⁴  Hz ) = λ

4.007*10⁻⁷  m =  λ

The wavelength of the yellow light = 4.007*10⁻⁷  m
8 0
3 years ago
Review. As an astronaut, you observe a small planet to be spherical. After landing on the planet, you set off, walking always st
anyanavicka [17]

To find the mass of the planet we will apply the relationship of the given circumference of the planet with the given data and thus find the radius of the planet. From the kinematic equations of motion we will find the gravitational acceleration of the planet, and under the description of this value by Newton's laws the mass of the planet, that is,

The circumference of the planet is,

\phi = 25.1m

Under the mathematical value the radius would be

\phi = 2\pi r

r = \frac{25}{2\pi}

r = 3.9788km

Using second equation of motion

x = \frac{1}{2} at^2

Replacing the values given,

1.4 = \frac{1}{2} a (29.2)^2

Rearranging and solving for 'a' we have,

a = 0.003283m/s^2

Using the value of acceleration due to gravity from Newton's law we have that

a = \frac{GM}{r^2}

Here,

r = Radius of the planet

G = Gravitational Universal constant

M = Mass of the Planet

\frac{(6.67*10^{-11})*M}{(3.9788*10^3)^2} = 0.003283

M = 7.79201*10^{14}kg

Therefore the mass of this planet is 7.79201*10^{14}kg

5 0
3 years ago
Other questions:
  • A 2.0 kg wood block is launched up a wooden ramp that is inclined at a 30° angle. The block’s initial speed is 10 m/s. What vert
    10·1 answer
  • The adjustments that your eyes make as they look from objects near to objects far away or from objects far away to objects close
    13·1 answer
  • you apply the same amount of heat to five grams of water and five grams of aluminum the temperature of the aluminum increases mo
    12·2 answers
  • Which of the following statements are true for magnetic force acting on a current-carrying wire in a uniform magnetic field? Che
    14·1 answer
  • What are the<br>2 factors that<br>increase the<br>electric force<br>between<br>objects?​
    8·1 answer
  • 8.
    13·1 answer
  • 30 points please answer asap!
    6·2 answers
  • Water flows with constant speed through a garden hose that goes up to 27.5 cm high. if the water pressure is 132kpa at the botto
    9·1 answer
  • A mass of 0.75 kilograms is attached to a spring/mass oscillator. A force of 5 newtons is required to stretch the spring 0.5 met
    8·1 answer
  • At which points on the roller coaster is the car not moving?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!