Answer:

Explanation:
A parallel-plate capacitors consist of two parallel plates charged with opposite charge.
Since the distance between the plates (1 cm) is very small compared to the side of the plates (19 cm), we can consider these two plates as two infinite sheets of charge.
The electric field between two infinite sheets with opposite charge is:

where
is the surface charge density, where
Q is the charge on the plate
A is the area of the plate
is the vacuum permittivity
In this problem:
- The side of one plate is
L = 19 cm = 0.19 m
So the area is

Here we want to find the maximum charge that can be stored on the plates such that the value of the electric field does not overcome:

Substituting this value into the previous formula and re-arranging it for Q, we find the charge:

Answer:
The momentum is 1.94 kg m/s.
Explanation:
To solve this problem we equate the potential energy of the spring with the kinetic energy of the ball.
The potential energy
of the compressed spring is given by
,
where
is the length of compression and
is the spring constant.
And the kinetic energy of the ball is

When the spring is released all of the potential energy of the spring goes into the kinetic energy of the ball; therefore,

solving for
we get:

And since momentum of the ball is
,

Putting in numbers we get:


Answer:
D. An image that is smaller than the object and is behind the mirror
it depends on the game but in most cases, it will be the opposing team.
ans is a.