Answer:as per as Newtons second law, The forces exerted on the rope create tension.
As such,The tension is equal to the applied force.The tension is trasmitted to the opposite side and of the rope delivering the applied force.
Hope this helps.. :)
<h3>Answer</h3>
option B)
19N
<h3>Explanation</h3>
If the object is at equilibrium, then the net force acting upon the object should be 0 N. Thus, if all the forces are added together, horizontal and vertical forces separately, then the resultant force (the vector sum) should be 0 Newton.
As we only need to find the magnitude of x-component of force F
so find all x component/horizontal forces acting on the object.
50cos(40) - 40cos(25) + 30cos(55) + x = 0
38.30 - 36.25 + 17.21 + x + = 0
19.26 + x = 0
x = - 19.26
x ≈ 19 (magnitude only)
Answer:
The magnitude of the force is 0.7255kN
Explanation:
The elevator floor acts on the person with a force that is due to the gravitational acceleration less the downward acceleration of the elevator:
(force of floor F) = (mass of person m) x [ (grav. acceleration g) - (elevator acceleration a) ]
in other words, considering the elevator floor as a reference frame in the Earth's gravitational field, the person's weight decreases due to the downward acceleration, as follows:

We are given the person's weight at rest, 0.9kN, from which the mass can be determined as:

So

Explanation:
speed : • how fast an object changes position
• miles per hour.
• distance/time.
velocity: • speed in a direction
• miles per hour North
• distance/ time in a direction
Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz