Diagram D. shows the sound waves generated by a siren
that is moving with constant speed to the left.
A sound wave is the sample of disturbance caused by the movement of strength journeying thru a medium because it propagates far away from the supply of the sound. Sound waves are created by using object vibrations and bring strain waves, for example, a ringing cellular phone.
Sound waves fall into three classes: longitudinal waves, mechanical waves, and strain waves. keep studying to find out what qualifies them as such. Longitudinal Sound Waves A longitudinal wave is a wave wherein the movement of the medium's debris is parallel to the course of the energy transport. Sound propagates via air or different mediums as a longitudinal wave, in which the mechanical vibration constituting the wave occurs along the direction of propagation of the wave.
Learn more about sound waves here:-brainly.com/question/1199084
#SPJ9
Answer:
option a
Explanation:
Size of an atom (diameter) = 10⁻¹⁰ m
There are approximately 10²² atoms in a single drop of water. If they are put in a straight line, the length would be
l = diameter of an atom × number of atoms
l = 10²²× 10⁻¹⁰ m = 10¹² m
Distance between the Sun and the Earth is 1.47 × 10¹¹ m. The calculated length is greater than the distance between the Sun and the Earth.
Thus, option a is correct.
Answer:
![B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
Explanation:
To find the magnitude of the magnetic field, you use the following formula for the calculation of the magnetic field generated by a current in a wire:

μo: magnetic permeability of vacuum = 4π*10^-7 T/A
I: current = 6.0 A
r: distance to the wire in which magnetic field is measured
In this case, you have four wires at corners of a square of length 9.0cm = 0.09m
You calculate the magnetic field in one corner. Then, you have to sum the contribution of all magnetic field generated by the other three wires, in the other corners. Furthermore, you have to take into account the direction of such magnetic fields. The direction of the magnetic field is given by the right-hand side rule.
If you assume that the magnetic field is measured in the up-right corner of the square, the wire to the left generates a magnetic field (in the corner in which you measure B) with direction upward (+ j), the wire down (down-right) generates a magnetic field with direction to the left (- i) and the third wire generates a magnetic field with a direction that is 45° over the horizontal in the left direction (you can notice that in the image attached below). The total magnetic field will be:
![B_T=B_1+B_2+B_3\\\\B_{T}=\frac{\mu_o I_1}{2\pi r_1}\hat{j}-\frac{\mu_o I_2}{2\pi r_2}\hat{i}+\frac{\mu_o I_3}{2\pi r_3}[-cos45\hat{i}+sin45\hat{j}]](https://tex.z-dn.net/?f=B_T%3DB_1%2BB_2%2BB_3%5C%5C%5C%5CB_%7BT%7D%3D%5Cfrac%7B%5Cmu_o%20I_1%7D%7B2%5Cpi%20r_1%7D%5Chat%7Bj%7D-%5Cfrac%7B%5Cmu_o%20I_2%7D%7B2%5Cpi%20r_2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Cmu_o%20I_3%7D%7B2%5Cpi%20r_3%7D%5B-cos45%5Chat%7Bi%7D%2Bsin45%5Chat%7Bj%7D%5D)
I1 = I2 = I3 = 6.0A
r1 = 0.09m
r2 = 0.09m

Then you have:
![B_T=\frac{\mu_o I}{2\pi}[(-\frac{1}{r_2}-\frac{cos45}{r_3})\hat{i}+(\frac{1}{r_1}+\frac{sin45}{r_3})\hat{j}}]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[(-\frac{1}{0.09m}-\frac{cos45}{0.127m})\hat{i}+(\frac{1}{0.09m}+\frac{sin45}{0.127m})]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[-16.67\hat{i}+16.67\hat{j}]\\\\B_T=2.0*10^-5[-\hat{i}+\hat{j}]T](https://tex.z-dn.net/?f=B_T%3D%5Cfrac%7B%5Cmu_o%20I%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7Br_2%7D-%5Cfrac%7Bcos45%7D%7Br_3%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7Br_1%7D%2B%5Cfrac%7Bsin45%7D%7Br_3%7D%29%5Chat%7Bj%7D%7D%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B%28-%5Cfrac%7B1%7D%7B0.09m%7D-%5Cfrac%7Bcos45%7D%7B0.127m%7D%29%5Chat%7Bi%7D%2B%28%5Cfrac%7B1%7D%7B0.09m%7D%2B%5Cfrac%7Bsin45%7D%7B0.127m%7D%29%5D%5C%5C%5C%5CB_T%3D%5Cfrac%7B%284%5Cpi%2A10%5E%7B-7%7DT%2FA%29%286.0A%29%7D%7B2%5Cpi%7D%5B-16.67%5Chat%7Bi%7D%2B16.67%5Chat%7Bj%7D%5D%5C%5C%5C%5CB_T%3D2.0%2A10%5E-5%5B-%5Chat%7Bi%7D%2B%5Chat%7Bj%7D%5DT)
It acquires a charge through electrons.
Hope this helps!!!^_~!!!