Answer:
Option D - 0.2 s
Explanation:
We are given;
Initial velocity; u = 7 m/s
Height of table; h = 1.8m
Now,since we want to find the time the car spent in the air, we will simply use one of Newton's equation of motion.
Thus;
h = ut + ½gt²
Plugging in the relevant values, we have;
1.8 = 7t + ½(9.8)t²
4.9t² + 7t - 1.8 = 0
Using quadratic formula to find the roots of the equation gives us;
t = -1.65 or 0.22
We can't have negative t value, thus we will pick the positive one.
So, t = 0.22 s
This is approximately 0.2 s
Hey! How's it going? If you need anything, feel free to send me a friend request and message me.
Don't worry if things get wrong, they will surely get better, if not, I'm here to talk to you. :)
Answer:
it means that velocity of a body rises by 9.8m/s each second if the air resistance is nrelated
mark me
Answer: Pressure increases as the depth increases.
Answer:
λ1 = 0.0129m = 1.29cm
λ2 = 0.00923m = 0.92 cm
Explanation:
To find the distance between the first order bright fringe and the central peak, can be calculated by using the following formula:
(1)
m: order of the bright fringe = 1
λ: wavelength of the light = 660 nm, 470 nm
D: distance from the screen = 5.50 m
d: distance between slits = 0.280mm = 0.280 *10^⁻3 m
ym: height of the m-th fringe
You replace the values of the variables in the equation (1) for each wavelength:
For λ = 660 nm = 660*10^-9 m

For λ = 470 nm = 470*10^-9 m
