Answer:
Explanation:
A buffer is defined as an aqueous mixture of a weak acid and its conjugate base or vice versa.
In the systems:
H₂CO₃(aq) and KHCO₃(aq): Carbonic acid, H₂CO₃, is a weak acid that, in solution with its conjugate pair, HCO₃⁻ make a <em>buffer system.</em>
NaCl(aq) and NaOH(aq): NaCl is a salt and NaOH is a strong base. Thus, this system <em>is not </em> a buffer system.
H₂O(l) and HCl(aq): Water is a solvent and HCl a strong acid. This <em>is not </em>a buffer system.
HCl(aq) and NaOH(aq): HCl is a strong acid and NaOH a strong base. This <em>is not </em>a buffer system.
NaCl(aq) and NaNO₃(aq): Both NaCl and NaNO₃ are salts and this system <em>is not </em>a buffer system.
Answer:
After 2 half-lives there will be 25% of the original isotope, and 75% of the decay product. After 3 half-lives there will be 12.5% of the original isotope, and 87.5% of the decay product. After 4 half-lives there will be 6.25% of the original isotope, and 93.75% of the decay product.
Explanation:
Answer;
=259 ml
Explanation;
-According to Gay Lussac's Law of Combining Volumes when gases react, they do so in volumes which have a simple ratio to one another, and to the volume of the product formed if gaseous, provided the temperature and pressure remain constant.
-Thus; from the volume of nitrogen and oxygen gases; we have; 316 / 178 = 1.775 moles of nitrogen gas per mole of oxygen gas.
-Therefore, nitrogen gas is the limiting reactant, and for each mole of nitrogen gas used, we will get 1 mole of N2O. This means the resulting volume of N2O with 100% yield will be the same as the volume of nitrogen gas used, thus, 100% yield will produce 316 mL.
However, with 82% yield the volume would be; 316 × 82/100 =259 ml
Therefore; the volume of N2O at 82% yield will be 259 ml