Answer:
violet
Explanation:
Waves with a short wavelength have the most energy. Red waves have a relatively long wavelength (in the 700 nm range), and violet waves are much shorter - roughly half that. Because violet waves have the shortest wavelength of the visible light spectrum, they carry the most energy (google)
Answer:

Explanation:
Hello,
In this case, by using the ideal gas equation, er can compute the volume of fluorine gas as shown below:

Best regards.
Answer:
The breaking of the chemical bonds of a storage molecule transfer energy, no what molecule is stored.
Explanation:
Being successful of plants and animals does not necessary depend on the stored molecule but on the energy being transferred during their breaking.
Answer:
C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.
Explanation:
For gas to behave as an ideal gas there are 2 basic assumptions:
- The intermolecular forces (IMF) are neglectable.
- The volume of the gas is neglectable in comparison with the volume of the container.
<em>In which instance is a gas most likely to behave as an ideal gas?</em>
<em>A.) At low temperatures, because the molecules are always far apart.</em> FALSE. At low temperatures, molecules are closer and IMF are more appreciable.
<em>B.) When the molecules are highly polar, because IMF are more likely.</em> FALSE. When IMF are stronger the gas does not behave as an ideal gas.
<em>C.) At room temperature and pressure, because intermolecular interactions are minimized and the particles are relatively far apart.</em> TRUE.
<em>D.) At high pressures, because the distance between molecules is likely to be small in relation to the size of the molecules.</em> FALSE. At high pressures, the distance between molecules is small and IMF are strong.