Answer:
Explanation:
2 H₂S(g) +S0₂(g) = 3 S(s) + 2H₂0(g)
2 x 34 g 64 g 3 x 32 g
68 g of H₂S reacts with 64 g of S0₂
3.89 g of H₂S reacts with 64 x 3 .89 / 68 g of S0₂
3.89 g of H₂S reacts with 3.66 g of S0₂
S0₂ given is 4.11 g , so it is in excess .
Hence H₂S is limiting reagent .
68 g of H₂S reacts with S0₂ to give 96 g of Sulphur
3.89 g of H₂S reacts with S0₂ to give 96 x 3.89 / 68 g of Sulphur
3.89 g of H₂S reacts with S0₂ to give 96 x 3.89 / 68 g of Sulphur
5.49 g of Sulphur is produced .
Actual yield is 4.89
percentage yield = 4.89 x 100 / 5.49
= 89 % .
Answer:
calcium to give calcium oxide to give calcium trioxocabonate (limestone) to give carbondioxide
Kinetic energy is energy in motion. B, a rolling ball would be your answer because a rolling ball is energy that is moving. The rest of the answers are wrong because the actions do not use kinetic energy.
Answer:
The rate decreases
Explanation:
When we dissolve a gas in a water, the process is exothermic. This implies that heat is evolved upon dissolution of a gas in water.
Recall from Le Chateliers principle that for exothermic reactions, an increase in temperature favours the reverse reaction. The implication of these is that when the temperature of the gas is increased, less gas will dissolve in water.
Hence increase in temperature decreases the rate of solubility of a gas in water.