Answer:
#1 is an organism
#2 is cell
#4 - Digestive System gets nutrients (good) from food and hands it over to the blood and Circulatory System then carries those nutrients where they need to go
Answer:
Axial
Explanation:
In the most stable conformation of Cis-3-tert-Butylcyclohexanol, the tert-butyl group is at equatorial position and the alcohol group is in the axial position.
If the tert-butyl group is placed in equatorial position, repulsions are minimized. The bulkier the group, the greater the energy difference between the axial and equatorial conformers. Hence for a ring having a bulky substituent, such bulky substituent is better placed in the equatorial position.
The energy difference between the conformers of Cis-3-tert-Butylcyclohexanol is so high that the compound is almost "frozen" in a conformation where the tert-butyl groups are equatorial and the -OH groups are axial. This conformer is more stable by 24 KJ/mol.
Answer:
Four possible isomers (1–4) for the natural product essramycin. The structure of compound 1 was attributed to essramycin by 1H NMR, 13C NMR, HMBC, HRMS, and IR experiments.
Explanation:
Three synthetic routes were used to prepare all four compounds (Figure 2A). All three reactions utilize 2-(5-amino-4H-1,2,4-triazol-3-yl)-1-phenylethanone (5) as the precursor, whereas each uses different esters (6–8) to construct the pyrimidinone ring. Isomer 1 was prepared by reaction A, which used triazole 5 and ethyl acetoacetate (6) in acetic acid. This was the reaction used in syntheses of essramycin by the Cooper and Moody laboratories.3,4 Reaction B produced compound 2 (minor product) and compound 3 (major product), which were separated chromatographically. This reaction allowed reagent 5 to react with ethyl 3-ethoxy-2-butenoate (7) in the presence of sodium in methanol, under reflux for 24 h. Compound 4 was prepared by reaction C, which was obtained by reflux of 5 and methyl 2-butynoate (8) in n-butanol.
360 seconds?
i’m guessing that is the answer as the question is unreasonable