Answer:
Density of the liquid = 1470.43 kg/m³
Explanation:
Given:
Mass of solid sphere(m) = 6.1 kg
Density of the metal = 2600 kg/m³
Thus volume of the liquid :
Volume of the sphere = 6.1 kg/2600 kg/m³ = 0.002346 m³
The volume of water displaced is equal to the volume of sphere (Archimedes' principle)
Volume displaced = 0.002346 m³
Buoyant force =
Where
is the density of the fluid
g is the acceleration due to gravity
V is the volume displaced
The free body diagram of the sphere is shown in image.
According to image:
Acceleration due to gravity = 9.81 ms⁻²
Tension force = 26 N
Applying in the equation to find the density of the liquid as:
<u>Thus, the density of the liquid = 1470.43 kg/m³</u>
Answer:
Thermal Energy
Explanation:
I'll give you an example, Rub your hands together. Then touch your face or leg to feel any temperature change. Most likely your hands are warmer.
98 elements are naturally forming elements.
Answer: 98
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.