Answer:
option (D) is correct.
Explanation:
According to the work energy theorem, the work done by all forces is equal to the change in kinetic energy of the body.
the kinetic energy of a body is directly proportional to the square of the speed of the body.
As the kinetic energy change, the speed of the body also change.
Option (D) is correct.
Answer:
I'm pretty sure it's 37.5 joules of energy
Explanation:
hope this helps!
Answer:
Please find the answer in the explanation
Explanation:
Friction is a force that opposes motion. One or two of the advantages of friction are break and ability of an object to walk.
Writing yes it is useful because when your writing because friction helps you see what your writing
ii. Rubbing. Yes, it is useful.
friction make it possible for two object to rub each other
iii. Skiing. No. It is not useful because With presence of friction, skiing will not be possible.
iv. Rotating a wheel No. It is not useful because Friction will oppose the rotation of the wheel.
Answer:
3600joules
Explanation:
formula :W=FS
W=work done (J)
F=force (N)
S=displacement moved in the direction of force (m)
200N×18m
=3600J
Answer:
Explanation:
This is a recoil problem, which is just another application of the Law of Momentum Conservation. The equation for us is:
which, in words, is
The momentum of the astronaut plus the momentum of the piece of equipment before the equipment is thrown has to be equal to the momentum of all that same stuff after the equipment is thrown. Filling in:
![[(90.0)(0)+(.50)(0)]_b=[(90.0)(v)+(.50)(-4.0)]_a](https://tex.z-dn.net/?f=%5B%2890.0%29%280%29%2B%28.50%29%280%29%5D_b%3D%5B%2890.0%29%28v%29%2B%28.50%29%28-4.0%29%5D_a)
Obviously, on the left side of the equation, nothing is moving so the whole left side equals 0. Doing the math on the right and paying specific attention to the sig fig's here (notice, I added a 0 after the 4 in the velocity value so our sig fig's are 2 instead of just 1. 1 is useless in most applications).
0 = 90.0v - 2.0 and
2.0 = 90.0v so
v = .022 m/s This is the rate at which he is moving TOWARDS the ship (negative was moving away from the ship, as indicated by the - in the problem). Now we can use the d = rt equation to find out how long this process will take him if he wants to reach his ship before he dies.
12 = .022t and
t = 550 seconds, which is the same thing as 9.2 minutes