Answer:
A: T = 120 N
B: T = 88.42 N
C: T = 70 N
Explanation:
Part A:
Since, the lighter bucket is supported by my had. So, the only unbalanced force in the system is the weight of heavier bucket. Hence, the tension in rope will be equal to the weight of heavier bucket.
<u>T = 120 N</u>
<u></u>
Part B:
This is the case where, two masses hang vertically on both sides of the pulley. To find the tension in such case we have the formula:
T = (2 m₁m₂g)/(m₁+m₂)
where,
m₁ = mass of heavier object = W₁/g = (120 N)/(9.8 m/s²) = 12.24 kg
m₁ = mass of lighter object = W₂/g = (70 N)/(9.8 m/s²) = 7.14 kg
g = 9.8 m/s²
Therefore,
T = [(2)(12.24 kg)(7.14 kg)(9.8 m/s²)]/(12.24kg + 7.14 kg)
T = 1713.6 N.kg/19.38 kg
<u>T = 88.42 N</u>
<u></u>
Part C:
Since, the heavier bucket is on ground. So, its weight is balanced by the normal reaction of the ground. The only unbalanced force in the system is the weight of lighter bucket. Hence, the tension in rope will be equal to the weight of lighter bucket.
<u>T = 70 N</u>
Answer:
do explain what u need help with?
The answer is cesium oxide
Answer:
It's due to the distance from either ends of strings origin...
Explanation:
As we know that waves behave moving in a flow from one side to another side and this gives a prospective of motion. Suppose a wave is pinched from the near one end of a guitar then due to the distortion created by the point of tie of strings the wave super imposes and moves with a velocity v and produces a wave frequency f. as we the pinching go down to the center the wave stabilizes itself to a stationary origin right at the center and the frequency then changes accordingly as moving down on the string.