1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
6

What is the definition of density

Physics
2 answers:
madam [21]3 years ago
8 0

Answer:

the degree of compactness of a substance.

Explanation:

The density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume: where ρ is the density, m is the mass, and V is the volume. Wikipedia

MakcuM [25]3 years ago
5 0

Answer:

The quantity of mass per unit volume of a substance

Explanation:

You might be interested in
You kick a soccer ball with a mass of 2 kg. The ball leaves your foot with a speed of 30 m/s. How much kinetic energy does the b
Lyrx [107]

Answer:

KE= 900 (I think)

Explanation:

KE=½mv²

KE= ½(2)(30)²

KE=½(60)²

KE=30²

KE=900

Hope this helps!

7 0
2 years ago
Read 2 more answers
A 2.5 g bullet traveling at 350 m/s hits a tree and slows uniformly to a stop while penetrating a distance of 12 cm into the tre
Cloud [144]

Answer: Work done = 153.125Joules, Work done = 0.003Nm

Explanation:

Kinetic energy of a body is the energy possessed by a body by virtue of its motion.

Mathematically,

K.E = 1/2MV²

Where;

M = mass of the body = 2.5g = 0.0025kg

V = velocity of the body = 350m/s

Substituting this values in the formula, we have;

K.E = 1/2× 0.0025×350²

K.E = 153.125Joules

Work done is the force applied to body to cause it to move through a distance.

Work = Force × distance

Force = ma = 0.0025 × 10

Force = 0.025N

Distance = 12cm = 0.12m

Work = 0.025×0.12

Work = 0.003Nm

work done by the tree in stopping the bullet is 0.003N

4 0
3 years ago
Read 2 more answers
How many complete revolutions are needed to draw the angle 725°?
uysha [10]
C. A complete revolution is 360 degree. two revolution is 720.
8 0
3 years ago
Read 2 more answers
Which volcanic hazard can block the sunlight and temporarily cool the Earth’s surface?
marissa [1.9K]
Pretty sure its volcanic ash or magma, hope this helps
4 0
3 years ago
A current of 4.00 mA flows through a copper wire. The wire has an initial diameter of 4.00 mm which gradually tapers to a diamet
lesya692 [45]

The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

The given parameters;

  • <em>Current flowing in the wire, I = 4.00 mA</em>
  • <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
  • <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
  • <em>Length of wire, L = 2.00 m</em>
  • <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>

<em />

The initial area of the copper wire;

A_1 = \frac{\pi d^2}{4} = \frac{\pi \times (0.004)^2}{4} =1.257\times 10^{-5} \ m^2

The final area of the copper wire;

A_2 = \frac{\pi d^2}{4} = \frac{\pi (0.001)^2}{4} = 7.86\times 10^{-7} \ m^2

The initial drift velocity of the electrons is calculated as;

v_d_1 = \frac{I}{nqA_1} \\\\v_d_1 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 1.257\times 10^{-5}} \\\\v_d_1 = 2.34 \times 10^{-8} \ m/s

The final drift velocity of the electrons is calculated as;

v_d_2 = \frac{I}{nqA_2} \\\\v_d_2 = \frac{4\times 10^{-3} }{8.5\times 10^{28} \times 1.6\times 10^{-19} \times 7.86\times 10^{-7}} \\\\v_d_2 = 3.74\times 10^{-7}  \ m/s

The change in the mean drift velocity is calculated as;

\Delta v = v_d_2 -v_d_1\\\\\Delta v = 3.74\times 10^{-7} \ m/s \ -\ 2.34 \times 10^{-8} \ m/s = 3.506\times 10^{-7} \ m/s

The time of motion of electrons for the initial wire diameter is calculated as;

t_1 = \frac{L}{v_d_1} \\\\t_1 = \frac{2}{2.34\times 10^{-8}} \\\\t_1 = 8.547\times 10^{7} \ s

The time of motion of electrons for the final wire diameter is calculated as;

t_2 = \frac{L}{v_d_1} \\\\t_2= \frac{2}{3.74 \times 10^{-7}} \\\\t_2 = 5.348 \times 10^{6} \ s

The average acceleration of the electrons is calculated as;

a = \frac{\Delta v}{\Delta t} \\\\a = \frac{3.506 \times 10^{-7} }{(8.547\times 10^7)- (5.348\times 10^6)} \\\\a = 4.38\times 10^{-15} \ m/s^2

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².

Learn more here: brainly.com/question/22406248

7 0
3 years ago
Other questions:
  • Pls help me solve this physics question​
    12·2 answers
  • Which parts of the spectrum show the presence of elements in the stars atmosphere
    5·2 answers
  • Jax went to the vet and the scale reads 9 pounds. what does this mean?
    12·1 answer
  • A 74-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.56 m,
    10·1 answer
  • Which of the following characteristics of stars is affected by a stars temperature?
    11·1 answer
  • How would I answer this equation? E= mc^2 for m
    15·1 answer
  • A 40-cm-long tube has a 40-cm-long insert that can be pulled in and out. A vibrating tuning fork is held next to the tube. As th
    15·1 answer
  • Which of these equations will you used to find the final velocity if the initial
    13·1 answer
  • When is momentum conserved?
    6·2 answers
  • 7 principles of Exercise and Sports Training
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!