Answer:
William Ferrel created a tide-prediction machine.
Explanation:
- William Ferrel create a machine in late 19th century that was the best combination of mechanical parts and computer coding.
- It was a mechanical analog computer that could predict the ebb of tides and even the height of tides that could be irregular.
- It was widely used for marine networks and navigation. Later on many improvisations and additional features were added on it.
- During the world war times, this tide prediction machine was of great use for military purpose.
Answer:
14.7 m/s.
Explanation:
From the question given above, the following data were obtained:
Time (t) = 1.5 s
Acceleration due to gravity (g) = 9.8 m/s².
Height = 11.025 m
Final velocity (v) = 0 m/s
Initial velocity (u) =?
We, can obtain the initial velocity of the penny as follow:
H = ½(v + u) t
11.025 = ½ (0 + u) × 1.5
11.025 = ½ × u × 1.5
11.025 = u × 0.75
Divide both side by 0.75
u = 11.025/0.75
u = 14.7 m/s
Therefore, the penny was travelling at 14.7 m/s before hitting the ground.
The electric field strength of a point charge is inversely proportional to the square of the distance from the charge ... a lot like gravity.
If the magnitude of the field is (2E) at the distance 'd', then at the distance '2d', it'll be (2E)/(2²). That's (2E)/4 = 0.5E .
4 is the difference sorry if i got it wrong :( :(
Answer:
option E
Explanation:
given,
diameter = 4 mm
shutter speed = 1/1000 s
diameter of aperture = ?
shutter speed = 1/250 s
exposure time to the shutter time

N is the diameter of the aperture and t is the time of exposure
now,


inserting all the values

N₂² = 4
N₂ = 2 mm
hence , the correct answer is option E