Answer: The molar concentration of oxygen gas in water is
.
Explanation:
Partial pressure of the
gas = 685 torr = 0.8905 bar
1 torr = 0.0013 bar
According Henry's law:

Value of Henry's constant of oxygen gas at 20 °C in water = 34860 bar


Let the number of moles of
gas in 1 liter water be n.
1 Liter water = 1000 g of water
Moles of water in 1 L 




Molar concentration of oxygen gas in 1 L of water:

The molar concentration of oxygen gas in water is
.
1. Salt is KNO₃<span>
<span>This is a </span>strong acid - strong base<span> <span>reaction. </span></span>HNO</span>₃ is the strong acid<span> <span>and </span></span>KOH is the strong
base<span>. </span><span>
H</span>⁺<span> in the HNO₃<span>
and </span></span>OH⁻<span> <span>of the KOH pair up and make </span></span>H₂O(l)<span>. </span><span>
NO</span>₃⁻<span> <span>and </span></span>K⁺<span> <span>pair up to make </span></span>KNO₃ salt<span>. </span><span>
<span>When writing chemical formulas </span>positive ion comes first<span> <span>and second
is negative ion. The charges should be switched. Since </span></span>positive ion has +1 and negative
ion has -1<span> <span>after
the switching off charges </span>the </span>product should be KNO</span>₃.<span>
Balance
equation is </span><span>
HNO</span>₃<span>(aq) + KOH(aq) → H</span>₂O(l) + KNO<span>₃(aq)</span><span>
<span>
2. Salt is Ca(NO</span></span>₃)₂<span>
</span>This is a strong acid - strong
base<span> reaction. </span>HNO₃ is the strong acid<span> and </span>Ca(OH)₂ is the strong base<span>. </span><span>
<span>
H</span></span>⁺<span> in the HNO₃ and </span>OH⁻<span> of the Ca(OH)₂
pair up and make </span>H₂O(l)<span>. </span><span>
Ca²⁺
and </span>NO₃⁻<span> pair up to make </span>Ca(NO₃)₂ salt<span>. </span><span>
<span>
</span><span>Positive ion is </span>Ca²⁺<span>
which has </span></span>+2 charge<span> and negative ion is</span> NO₃⁻<span> <span>which has </span></span>-1 charge<span>. From switching the charges </span>Ca²⁺ gets 1<span> <span>while </span></span>NO₃⁻ gets 2.<span> Hence, the salt should be </span>Ca(NO₃)₂.<span>
Balanced equation
is
</span>2HNO₃<span>(aq) + Ca(OH)</span>₂<span>(aq) → 2H</span>₂O(l) + Ca(NO<span>₃)₂(aq)</span><span>
<span>
3. Salt is CaCl</span></span>₂<span>
This is a strong acid - strong base<span> reaction. </span>HCl is the
strong acid<span> and </span>Ca(OH)</span>₂ is the strong base<span>. </span><span>
<span>
H</span></span>⁺<span> in the HCl and </span>OH⁻<span> of the Ca(OH)₂
pair up and make </span>H₂O(l)<span>. </span><span>
Ca²⁺
and </span>Cl⁻<span> pair up to make </span>CaCl₂ salt<span>. </span><span>
<span>
</span><span>Positive ion is </span>Ca²⁺
which has </span>+2
charge<span> and negative ion is</span> Cl⁻<span> which has </span>-1
charge<span>. By switching the charges </span>Ca²⁺ gets 1<span> while </span>NO₃⁻ gets 2.<span> Hence, the salt should be </span>CaCl₂.<span>
Balance
equation is
</span><span>2HCl(aq) + Ca(OH)</span>₂<span>(aq) → 2H</span>₂O(l) + CaCl₂<span>(aq)
4. Salt is KCl<span>
</span>This is a strong acid - strong base<span> reaction. </span>HCl is the
strong acid<span> and </span>KOH is
the strong base<span>. </span>
<span>
H</span></span>⁺<span> in the HCl and </span>OH⁻<span> of the KOH pair up and make </span>H₂O(l)<span>. </span><span>
K</span><span>⁺ and </span>Cl⁻<span> pair up to make </span>KCl salt<span>. </span><span>
<span>
</span><span>Positive ion is K</span></span><span>⁺ which has </span>+1
charge<span> and negative ion is</span> Cl⁻<span> which has </span>-1
charge<span>. By switching the charges </span>K⁺ gets 1<span> and </span>Cl⁻ also gets 1.<span> Hence, the salt should be </span>KCl.<span>
Balance
equation is
</span><span>HCl(aq) + KOH(aq) → H</span>₂<span>O(l) + KCl(aq)</span>
Explanation:
The reaction equation will be as follows.

Calculate the amount of
dissolved as follows.

It is given that
= 0.032 M/atm and
=
atm.
Hence,
will be calculated as follows.
=
= 
= 
or, = 
It is given that 
As, ![K_{a} = \frac{[H^{+}]^{2}}{[CO_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%7D%7B%5BCO_%7B2%7D%5D%7D)
= 
= 
Since, we know that pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
So, pH = 
= 5.7
Therefore, we can conclude that pH of water in equilibrium with the atmosphere is 5.7.
Answer:
a) 965,1 lbf
b) 4,5 kg
c) 1,33 * 10^6 dynes
Explanation:
Mass of an object refers to the amount of mattter it cotains, it can be expressed it gr, kg, lbm, ton, etc.
Weight of an object refers to a force, and is the measurement of the pull of gravitiy on an object. It may be definide as the mass times the acceleration of gravity.
w=mg
In Planet Earth, the nominal "average" value for gravity is 9,8 m/s² (in the International System) or 32,17 ft/s² (in the FPS system).
To solve this problem we'll use the following conversion factors:
1 lbf = 1 lbm*ft/s²
1 N = 1 kg*m/s²
1 dyne = 1 gr*cm/s² and 1 N =10^5 dynes
1 ton = 907,18 kg
1 k = 1000 gr
a) m = 30 lbm

b) w = 44 N
First, we clear m of the weight equation and then we replace our data.

c) m = 15 ton
D. precision. At first glance you can mark out A and B because the answers does not relate to the question. If question had said "what do you call it when the measurement is close to the actual answer" then you would have picked C. So that leaves you D. precision.