Answer:
8.37×10⁻⁴ N/C
Explanation:
Electric Field: This is the ratio of electrostatic force to electric charge. The S.I unit of electric field is N/C.
From the question, the expression for electric field is given as,
E = F/Q.......................... Equation 1
Where E = Electric Field, F = force experienced by the charged balloon, Q = Charge on the balloon.
Given: F = 8.2×10⁻² Newton, Q = 9.8×10 Coulombs = 98 Coulombs
Substitute these values into equation 1
E = 8.2×10⁻² /98
E = 8.37×10⁻⁴ N/C
Hence the Electric Field of the charged balloon = 8.37×10⁻⁴ N/C
The correct answer is - a. was a sign of danger.
Once the people saw that the ocean waters are receding and were living vast space without water behind them, they knew that something big and very dangerous will happen. And in fact it did. The water that was sucked in in the place were there was a crack on the ocean floor, got shot back under big pressure and it had very big speed, as well as having waves that were destroying anything on their way.
Answer:
The value is
Explanation:
From the question we are told that
The amount of power delivered is 
The time taken is 
The wavelength is 
Generally the energy delivered is mathematically represented as

Where
is the Planck's constant with value 
c is the speed of light with value 
So

=> 
Answer:
About 8.3 minutes
Explanation:
Use the formula for velocity as the distance covered by the light divided the time it takes:
[/tex]
Use the information about the speed of light in vacuum: 
and the information you are given regarding the distance between Sun and Earth: 
to solve the first velocity equation for the unknown time "t":

we can convert second into minutes by dividing by 60: 500 s = 500/60 minutes = 8.3333... minutes
Answer:
5600N
Explanation:
Given parameters:
Mass of car = 700kg
Initial velocity = 10m/s
Final velocity = 30m/s
Displacement = 50m
Unknown:
Net force acting on the car = ?
Solution:
To find the force acting on a body, it is pertinent we know the mass and acceleration.
Force = mass x acceleration
Now;
Let us find the acceleration from the kinematics equations:
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
30² = 10² + (2 x a x 50)
900 = 100 + 100a
100a = 800
a = 8m/s²
Therefore;
Force = 700 x 8 = 5600N