Answer:
Wavelength λ = 7.31 × 10^-37 m
Explanation:
From De Broglie's equation;
λ = h/mv
Where;
λ = wavelength in meters
h = plank's constant = 6.626×10^-34 m^2 kg/s
m = mass in kg
v = velocity in m/s
Given;
v = 24 mi/h
Converting to m/s
v = 24mi/h × 0.447 m/s ×1/(mi/h)
v = 10.73m/s
m = 84.5kg
Substituting the values into the equation;
λ = (6.626×10^-34 m^2 kg/s)/(84.5kg × 10.73m/s)
λ = 7.31 × 10^-37 m

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Many ways, but some of the most famous are kicks (side, back, front, snap) or a smash.
Hope it helped! :)