Answer:
371.2 mm
Explanation:
The Balmer series of spectral lines is obtained from the formula
1/λ = R(1/2² -1/n²) where λ = wavelength, R = Rydberg's constant = 1.097 × 10⁷ m⁻¹
when n = 15
1/λ = 1.097 × 10⁷ m⁻¹(1/2² -1/15²)
= 1.097 × 10⁷ m⁻¹(1/4 -1/225)
= 1.097 × 10⁷ m⁻¹(0.25 - 0.0044)
= 1.097 × 10⁷ m⁻¹ 0.245556
= 2.693 10⁶ m⁻¹
So,
λ = 1/2.693 10⁶ m⁻¹
= 0.3712 10⁻⁶ m
= 371.2 mm
Moles Pbl2 = 0.8628 g : 461.01 g/mol = 0.001871
moles I = 2 x 0.001871 = 0.003742
[I-] = 0.003742/ 0.0429
= 0.0872 M
If the hypothesis is tested extensively and if competing hypothesis are eliminated. Pretty much your hypothesis has to be tested many times and precisely accurate each time.
The strength of the electric field is 5 N/C
Explanation:
The magnitude of the electric field produced by a single-point charge is given by:

where
is the Coulomb's constant
Q is the magnitude of the charge
r is the distance from the charge
In this problem, we have:
is the charge producing the field
r = 100 m is the distance from the charge at which we want to calculate the field
Substituting into the equation, we find the s trength of the electric field:

Learn more about electric field:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly