1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksana_A [137]
2 years ago
13

Do we live in a simulation?

Physics
2 answers:
WINSTONCH [101]2 years ago
4 0

Answer:

There is a 50-50 chance that we do live in a simulation.

Explanation:

Lilit [14]2 years ago
3 0

Answer:

well no, but yes

Explanation:

depends on your religion tbh

You might be interested in
What new tool did geologists use to estimate the changing flow rates of lava over the duration of this eruption? Hint: The answe
Vladimir [108]

Answer:

Option b, pothographs from drones.

Explanation:

the USGS (U.S. Geological Survey) decided to make photographic captures from drones to the volcanic surfaces, which allowed through observations to understand things like the characteristics of the lava, the height of the volcanic plumes (among others).

Podemos ver en el siguiente enlace un ejemplo de fotografía tomada desde un dron al Kilauea.

https://www.usgs.gov/media/images/k-lauea-volcano-drone-over-lava-channel

4 0
3 years ago
Determine the gravitational field 300km above the surface of the earth. How does this compare to the field on the earth's surfac
Serjik [45]
The strength of the gravitational field is given by:
g= \frac{GM}{r^2}
where
G is the gravitational constant
M is the Earth's mass
r is the distance measured from the centre of the planet.

In our problem, we are located at 300 km above the surface. Since the Earth radius is R=6370 km, the distance from the Earth's center is:
r=R+h=6370 km+300 km=6670 km= 6.67 \cdot 10^{6} m

And now we can use the previous equation to calculate the field strength at that altitude:
g= \frac{GM}{r^2}= \frac{(6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2})(5.97 \cdot 10^{24} kg)}{(6.67 \cdot 10^6 m)^2}  = 8.95 m/s^2

And we can see this value is a bit less than the gravitational strength at the surface, which is g_s = 9.81 m/s^2.
4 0
3 years ago
A balloon of mass M is floating motionless in the air. A person of mass less than M is on a rope ladder hanging from the balloon
Tasya [4]

Let the mass of the person be m. Total momentum is conserved (because the exterior forces on the system are balanced), especially the component in the vertical direction.

Given that,

Mass of gallon is M

Let man mass be m

Velocity of man is v

Let velocity if ballot be Vb

When the person begin to move we have

Conservation of momentum

mv + MVb=0

MVb=-mv

Vb= -(m/M) v

Given that the mass of man is less than mass of balloon. i.e. m<M

So, if m<M, then, m/M <1

Therefore, .

Vb= -(m/M) v

Vb< -v

This implies that the velocity of balloon is less than the velocity of man and if is also moving in opposite direction

So the man is moving upward, then the balloon is moving downward and it's velocity is less than the velocity of man,

The answer is C

Down with a speed less than v

6 0
3 years ago
Read 2 more answers
Why does eating less meat conserve more water than just eating plants?
Afina-wow [57]

Answer:

Studies show that eating fewer animal-based products could reduce water use since animal production uses more water than crops do. In addition, reducing the amount of food that's lost or wasted at various points in the food supply chain could feed about 1 billion extra people while simultaneously reducing water use.

3 0
2 years ago
Read 2 more answers
Ted Clubber Lang. A hook in boxing primarily involves horizontal flexion of the shoulder while maintaining a constant angle at t
il63 [147K]

Answer:

15 m/s or 1500 cm/s

Explanation:

Given that

Speed of the shoulder, v(h) = 75 cm/s = 0.75 m/s

Distance moved during the hook, d(h) = 5 cm = 0.05 m

Distance moved by the fist, d(f) = 100 cm = 1 m

Average speed of the fist during the hook, v(f) = ? cm/s = m/s

This can be solved by a very simple relation.

d(f) / d(h) = v(f) / v(h)

v(f) = [d(f) * v(h)] / d(h)

v(f) = (1 * 0.75) / 0.05

v(f) = 0.75 / 0.05

v(f) = 15 m/s

Therefore, the average speed of the fist during the hook is 15 m/s or 1500 cm/s

6 0
3 years ago
Other questions:
  • a 0.05-kg starts from rest at a height of 0.95m. assuming no friction, what is the kinetic energy of the car when it reaches the
    7·1 answer
  • There are 2 questions into 1
    5·1 answer
  • Two 2.0 kg bodies, A and B, collide. The velocities before the collision are ~vA = (15ˆi + 30ˆj) m/s and ~vB = (−10ˆi + 5.0ˆj) m
    11·1 answer
  • For study, the Earth can be divided into three parts:
    15·2 answers
  • A rocket moves upward, starting from rest with an acceleration of +30.0 m/s2 for 5.00 s. It runs out of fuel at the end of this
    6·1 answer
  • Which term is defined as an investigative process that recognizes that scientific concepts and
    11·1 answer
  • Can you answer this question about work and force?
    6·1 answer
  • Under what condition will kinetic friction slow a sliding object?
    11·1 answer
  • small plastic container, called the coolant reservoir, catches the radiator fluid that overflowswhen the automobile engine becom
    5·1 answer
  • The rate of change in position at a given point in time
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!