Here in crash test the two forces are acting on the dummy in two different directions
As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.
So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors
so we can say

here given that


now we will plug in all data in the above equation


so it will have net force 4501.9 N which will be reported by sensor
Answer:
Tycho Brahe
Explanation:
Tycho Brahe's accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion.
Answer:
a_total = 2 √ (α² + w⁴)
, a_total = 2,236 m
Explanation:
The total acceleration of a body, if we use the Pythagorean theorem is
a_total² = a_T²2 +
²
where
the centripetal acceleration is
a_{c} = v² / r = w r²
tangential acceleration
a_T = dv / dt
angular and linear acceleration are related
a_T = α r
we substitute in the first equation
a_total = √ [(α r)² + (w r² )²]
a_total = 2 √ (α² + w⁴)
Let's find the angular velocity for t = 2 s if we start from rest wo = 0
w = w₀ + α t
w = 0 + 1.0 2
w = 2.0rad / s
we substitute
a_total = r √(1² + 2²) = r √5
a_total = r 2,236
In order to finish the calculation we need the radius to point A, suppose that this point is at a distance of r = 1 m
a_total = 2,236 m
Answer:
Acceleration of the meteorite, 
Explanation:
It is given that,
A Meteorite after striking struck a car, v = 0
Initial speed of the Meteorite, u = 130 m/s
Distance covered by Meteorite, s = 22 cm = 0.22 m
We need to find the magnitude of its deceleration. It can be calculated using the third equation of motion as :



So, the deceleration of the Meteorite is
. Hence, this is the required solution.
Answer: proton mass 1 and neutron has no mass number
Explanation: proton because of positive charge neutron because of negative charge