Answer:−3K−395,−374,−198,−187
Step-by-step explanation:
Remove parentheses.
1−3K−396,0−374,0−198,0−187
Simplify 1-3K-3961−3K−396 to -3K-395−3K−395.
−3K−395,0−374,0−198,0−187
Simplify 0-3740−374 to -374−374.
−3K−395,−374,0−198,0−187
Simplify 0-1980−198 to -198−198.
−3K−395,−374,−198,0−187
Simplify 0-1870−187 to -187−187.
−3K−395,−374,−198,−187
If you want to find the solutions for this you have to factor it. Since it's a second degree polynomial, you'll have 2 solutions. Factoring this using the quadratic formula, you'll get factors of (5x-8)(3x-4). Solving these for x you get x = 8/5 and x = 4/3.
This is a combination problem.
6 nCr 2

<span><span>
</span></span>
Answer:
a) 0.70
b) 0.82
Step-by-step explanation:
a)
Let M be the event that student get merit scholarship and A be the event that student get athletic scholarship.
P(M)=0.3
P(A)=0.6
P(M∩A)=0.08
P(not getting merit scholarships)=P(M')=?
P(not getting merit scholarships)=1-P(M)
P(not getting merit scholarships)=1-0.3
P(not getting merit scholarships)=0.7
The probability that student not get the merit scholarship is 70%.
b)
P(getting at least one of two scholarships)=P(M or A)=P(M∪A)
P(getting at least one of two scholarships)=P(M)+P(A)-P(M∩A)
P(getting at least one of two scholarships)=0.3+0.6-0.08
P(getting at least one of two scholarships)=0.9-0.08
P(getting at least one of two scholarships)=0.82
The probability that student gets at least one of two scholarships is 82%.