C. The Seasons change during the year.
Would be the correct answer.
Answer:
Increase in the concentration of the reactants (vinegar and baking soda) leads to an increase in the rate of reaction (more volume of CO2 is evolved within a shorter time)
Explanation:
The chemical reaction between baking soda and vinegar in water is shown in the chemical reaction equation below;
NaHCO3(aq) + CH3COOH(aq) ----->CO2(g) + H2O(l) + CH3COONa(aq)
The chemical name of baking soda is sodium bicarbonate (NaHCO3) while vineager is a dilute acetic acid (CH3COOH) solution. This reaction provides a very easy set up in which we can study the effect of concentration on the rate of chemical reaction.
We must have it behind our minds that increase in the concentration of reactant species increases the rate of chemical reaction. Secondly, the rate of the reaction between baking soda and vinegar can be monitored by observing the volume of CO2 evolved and how quickly it evolves from the reaction mixture.
We can now postulate a hypothesis which states that; 'increase in the concentration of the reactants (vinegar and baking soda) leads to an increase in the rate of reaction (more volume of CO2 is evolved within a shorter time).'
If we go ahead to subject this hypothesis to experimental test, it will be confirmed to be true because a greater volume of CO2 will be evolved within a shorter time as the concentration of the reactants increases.
Answer:
a) E = 17.55 MeV
b) E = 18.99 MeV
c) E = 3.29 MeV
d) You can use the methods applied for the other parts to solve this, the equation is not properly written
e) E = 4.075 MeV
Explanation:
Energy Released, 

Mass of 1H, 
Mass of 2H, 
Mass of 3H, 
Mass of Helium, 
Mass of Beryllium, 
Mass of neutron, 
a) 

Energy released,

Energy released = 17.55 MeV
b) 

Energy released,

c)
+ n

Energy released,

E = 3.29 MeV(Energy is released)
d) You can use the methods applied for the other parts to solve this, the equation is not properly written
e) 


E = 4.075 MeV ( Energy is released)
Answer: 35 grams
Explanation: In sea water there is typically close to 35 grams of dissolved salts in each liter. It is written as 35 ‰ The normal range of ocean salinity ranges between 33-37 grams per liter (33‰ - 37‰). But as in weather, where there are areas of high and low pressure, there are areas of high and low salinity.
Answer:
a
Explanation:
first one i did the test trust me