Answer:
(a) 13.7 g.
(b) 28.91 g.
Explanation:
- molality (m) is the no. of moles of solute dissolved in 1.0 kg of solvent.
∴ m = (no. of moles of solute)/(mass of water (kg))
<em>∴ m = (mass/molar mass of solute)/(mass of water (kg)).</em>
<em />
<u><em>(a) Calculate the mass of CaCl₂·6H₂O needed to prepare 0.125 m CaCl₂(aq) by using 500. g of water.</em></u>
∵ m = (mass/molar mass of CaCl₂·6H₂O)/(mass of water (kg)).
m = 0.125 m, molar mass of CaCl₂·6H₂O = 219.0757 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of CaCl₂·6H₂O / 219.0757 g/mol)/(0.5 kg).
∴ mass of CaCl₂·6H₂O = (0.125 m)(219.0757 g/mol)(0.5 kg) = 13.7 g.
<u><em>(b) What mass of NiSO₄·6H₂O must be dissolved in 500. g of water to produce 0.22 m NiSO₄(aq)?</em></u>
∵ m = (mass/molar mass of NiSO₄·6H₂O)/(mass of water (kg)).
m = 0.22 m, molar mass of NiSO₄·6H₂O = 262.84 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of NiSO₄·6H₂O / 262.84 g/mol)/(0.5 kg).
∴ mass of NiSO₄·6H₂O = (0.22 m)(262.84 g/mol)(0.5 kg) = 28.91 g.
Answer:
The specific heat of water is 4.18 J/g C.
Explanation:
q
=
m
C
s
Δ
T
Never forget that!
2200
=
m
⋅
4.18
J
g
⋅
°
C
⋅
66
°
C
∴
m
≈
8.0
g
Answer:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
Explanation:
For the reaction:
H₂C₂O₄(g) → CO₂(g) + HCOOH(g)
At t = 0, the initial pressure is just of H₂C₂O₄(g). At t= 20000 s, pressures will be:
H₂C₂O₄(g) = P₀ - x
CO₂(g) = x
HCOOH(g) = x
P at t=20000 is:
P₀ - x + x + x = P₀+x. That means P at t=20000s - P₀ = x
For 1st point:
x = 92,8-65,8 = 27
Pressure of H₂C₂O₄(g) at t=20000s: 65,8-27 = 38,8
2nd point:
x = 130-92,1 = 37,9
H₂C₂O₄(g): 92,1 - 37,9 = 54,2
3rd point:
x = 157-111 = 46
H₂C₂O₄(g): 111-46 = 65
Now, as the rate law is :
v = k P[H₂C₂O₄]
Based on integrated rate law, k is:
(- ln P[H₂C₂O₄] + ln P[H₂C₂O₄]₀) / t = k
1st point:
k = 2,64x10⁻⁵
2nd point:
k = 2,65x10⁻⁵
3rd point:
k = 2,68x10⁻⁵
The averrage of this values is:
k = 2,66x10⁻⁵
That means law is:
v = 2,66x10⁻⁵ P[H₂C₂O₄]
I hope it helps!
Answer:
The Kc of this reaction is 311.97
Explanation:
Step 1: Data given
Kp = 0.174
Temperature = 243 °C
Step 2: The balanced equation
N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 3: Calculate Kc
Kp = Kc *(RT)^Δn
⇒ with Kp = 0.174
⇒ with Kc = TO BE DETERMINED
⇒ with R = the gas constant = 0.08206 Latm/Kmol
⇒ with T = the temperature = 243 °C = 516 K
⇒ with Δn = number of moles products - moles reactants 2 – (1 + 3) = -2
0.174 = Kc (0.08206*516)^-2
Kc = 311.97
The Kc of this reaction is 311.97