Answer:
The temperature of the gas is 876.69 Kelvin
Explanation:
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P*V = n*R*T
where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas.
In this case:
- P= 470 mmHg
- V= 570 mL= 0.570 L
- n= 0.216 g= 0.0049 moles (being the molar mass of carbon dioxide is 44 g/mole)
- R= 62.36367

Replacing:
470 mmHg*0.570 L= 0.0049 moles* 62.36367
*T
Solving:

T= 876.69 K
<em><u>The temperature of the gas is 876.69 Kelvin</u></em>
Answer: (2) decreasing the concentration of HCl(aq) to 0.1 M
Explanation: Rate of a reaction depends on following factors:
1. Size of the solute particles: If the reactant molecules are present in smaller size, surface of particles and decreasing the size increases the surface area of the solute particles. Hence, increasing the rate of a reaction.
2. Reactant concentration: The rate of the reaction is directly proportional to the concentration of reactants.
3. Temperature: Increasing the temperature increases the energy of the molecules and thus more molecules can react to give products and rate increases.
(1) Increasing the initial temperature to 25°C will increase the reaction rate.
(2) Decreasing the concentration of HCl(aq) to 0.1 M will decrease the reaction rate due to lesser concentration.
(3) Using 1.2 g of powdered Mg will increase the reaction rate due to large surface area.
(4) Using 2.4 g of Mg ribbon will increase the reaction rate due to high concentration of reactants.
Complete balanced equation: 2HNO₃ + Ca(OH)₂ → Ca(NO₃)₂ + 2H₂O
Ionized equation (with spectator ions):
2H⁺ + 2NO₃⁻ + Ca²⁺ + 2OH⁻ → Ca²⁺ + 2NO₃⁻ + 2H₂O
By eliminating the ions that are the same of both sides of the equation (spectator ions):
2H⁺ + 2OH⁻ → 2H₂O [Net Ionic Equation]
Answer:
the four main spheres of the earth are geosphere, hydrosphere, atmosphere and biosphere
Explanation:
geosphere consists of all rocks on Earth
atmosphere which are the gases that surrounds the earth
hydrosphere which is all the water on the earth
biosphere which are the living things on the earth
The rate of the backward reaction increases
Explanation:
It is evident that if the reaction is left to proceed spontaneously, the forward reaction is favored because it results in a decrease in pressure in the system (The total reactants have 5 moles and the products have 3 in total).
Increasing H₂O concentration is then reaction, therefore, stymies the forward reaction and favors the reserves reaction. This is because the reverse reaction will lead to reduced pressure.