Molality
is one way of expressing concentration of a solute in a solution. It is expressed
as the mole of solute per kilogram of the solvent. To calculate for the
molality of the given solution, we need to convert the mass of solute into
moles and divide it to the mass of the solvent.
<span>
Moles of HCl = 5.5 g HCl ( 1 mol HCl / 36.46 g HCl ) = 0.1509 mol HCl</span>
<span>
Molality = 0.1509 mol HCl / 200 g C2H6O ( 1 kg / 1000 g )
Molality
= 0.7543 mol / kg</span>
<span>The concentration in molality of hcl in a solution that is prepared by dissolving 5.5 g of hcl in 200.0 g of c2h6o is
0.7453 molal.</span>
Multiply 10.49 by 12.993. that should be it. 130 grams ish?
Magnets have batteries and the batteries make the magnets work it depends on which way the batteries are facing or if not im sorry and i hope this helped
Answer:
Mass of C₂H₄N₂ produced = 3.64 g
Explanation:
The balanced chemical equation for the reaction is given below:
3CH₄ (g) + 5CO₂ (g) + 8NH₃ (g) → 4C₂H₄N₂ (g) + 10H₂O (g)
From the equation, 3 moles of CH₄ reacts with 5 moles of CO₂ and 8 moles of NH₃ to produce 4 moles of C₂H₄N₂ and 10 moles of H₂O
Molar masses of the compounds are given below below:
CH₄ = 16 g/mol; CO₂ = 44 g/mol; NH3 = 17 g/mol; C₂H₄N₂ = 56 g/mol; H₂O g/mol
Comparing the mole ratios of the reacting masses;
CH₄ = 1.65/16 = 0.103
CO₂ = 13.5/44 = 0.307
NH₃ = 2.21/17 = 0.130
converting to whole number ratios by dividing with the smallest ratio
CH₄ = 0.103/0.103 = 1
CO₂ = 0.307/0.103 = 3
NH₃ = 0.130/0.103 = 1.3
Multiplying through with 5
CH₄ = 1 × 5 = 5
CO₂ = 3 × 5 = 15
NH₃ = 1.3 × 5 = 6.5
Therefore, the limiting reactant is NH₃
8 × 17 g (136 g) of NH₃ reacts to produce 4 × 56 g (224 g) of C₂H₄N₂
Therefore, 2.21 g of NH₃ will produce (2.21 × 224)/136 g of C₂H₄N₂ = 3.64 g of C₂H₄N₂
Mass of C₂H₄N₂ produced = 3.64 g