1.785714286 moles
The number of moles (n) for nitrogen is: [ n=50.0÷28.0 ] = 1.785714286 moles.
Answer:
398 mL
Explanation:
Using the equation for molarity,
C₁V₁ = C₂V₂ where C₁ = concentration before adding water = 8.61 mol/L and V₁ = volume before adding water, C₂ = concentration after adding water = 1.75 mol/L and V₂ = volume after adding water = 500 mL = 0.5 L
V₂ = V₁ + V' where V' = volume of water added.
So, From C₁V₁ = C₂V₂
V₁ = C₂V₂/C₁
= 1.75 mol/L × 0.5 L ÷ 8.61 mol/L
= 0.875 mol/8.61 mol/L
= 0.102 L
So, V₂ = V₁ + V'
0.5 L = 0.102 L + V'
V' = 0.5 L - 0.102 L
= 0.398 L
= 398 mL
So, we need to add 398 mL of water to the nitric solution.
Answer:
The chemical reaction in which solid calcium oxide is treated liquid water is an example of Synthesis reaction. Hence, the answer is (D) Synthesis.
Explanation:
The formula of Calcium Oxide is CaO.
The formula of liquid water is H₂O.
Calcium Oxide reacts with water and forms Calcium Hydroxide. The Chemical equation is shown below.
CaO + H₂O --> Ca(OH)₂.
This is a Synthesis reaction because Ca(OH)₂ is synthesized by using Calcium Oxide and water.
The product of this reaction is calcium hydroxide, also known as slaked lime.
Thus, when calcium oxide reacts with water, slaked lime is produced.
Calcium oxide is also known as lime and is most commonly used for many purposes. It can be used for pH correction of water or for its disinfection (with excess lime).
We are given with
136 g P4
excess oxygen
The complete combustion reaction is
P4 + 5O2 => 2P2O5
Converting the amount of P4 to moles
136/123.9 = 1.098 moles
Using stoichiometry
moles P2O5 = 1.098 x 2 = 2.195 moles P2O5
Answer:
Benzene must be kept away from flames.
Explanation:
Edge2020