The field of study that Christian Doppler's work influenced the most was about <u>light </u><u>waves.</u>
Hope it helps you.
The integrated rate law for a second-order reaction is given by:
![\frac{1}{[A]t} = \frac{1}{[A]0} + kt](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%20%20%5Cfrac%7B1%7D%7B%5BA%5D0%7D%20%2B%20kt%20)
where, [A]t= the concentration of A at time t,
[A]0= the concentration of A at time t=0
<span>k =</span> the rate constant for the reaction
<u>Given</u>: [A]0= 4 M, k = 0.0265 m–1min–1 and t = 180.0 min
Hence, ![\frac{1}{[A]t} = \frac{1}{4} + (0.0265 X 180)](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%280.0265%20X%20180%29%20)
<span> = 4.858</span>
<span><span><span>Therefore, [A]</span>t</span>= 0.2058 M.</span>
<span>
</span>
<span>Answer: C</span>oncentration of A, after 180 min, is 0.2058 M
Answer:
Substitution mutation
Explanation:
A substitution mutation is a type of mutation in which one or more nucleotide base is replaced by another in a sequence. This will result in the replacement of one or more amino acid in the amino acid sequence.
This is the case in this question where the original amino acid sequence was given as: Leucine – Alanine – Glycine – Leucine. After mutation, the following mutated sequence was produced: Leucine – Alanine – Valine – Leucine.
As illustrated above, one would notice that there is replacement of GLYCINE amino acid by VALINE in the mutated sequence, hence, it is an example of SUBSTITUTION MUTATION.